【題目】設△ABC三個內(nèi)角A、B、C所對的邊分別為已知
(1)求角B的大;
(2)如圖,在△ABC內(nèi)取一點P,使得PB=2,過點P分別作直線BA、BC的垂線PM、PN,垂足分別是M、N,設∠PBA=求四邊形PMBN的面積的最大值及此時的值.
【答案】(1)B(2)α時,四邊形PMBN的面積取得最大值.
【解析】
(1)由acosA=bcosB及正弦定理可得:sinAcosA=sinBcosB,即sin2A=sin2B,又A∈(0,π),B∈(0,π),可得A=B或A+B. 由于C,即可得出.
(2)由題設,在Rt△PMB中,PM=2sinα;PN=2cosα,得其面積;在Rt△PNB中,同理可得PN=2sin(α),PM=2cos(α),α∈(0,)得其面積,進而得四邊形面積,利用恒等變換結(jié)合三角函數(shù)最值即可得出.
(1)由acosA=bcosB及正弦定理可得:sinAcosA=sinBcosB,
即sin2A=sin2B,又A∈(0,π),B∈(0,π),
∴有A=B或A+B.
又∵C,得A+B,與A+B矛盾,
∴A=B,因此B.
(2)由題設,得在Rt△PMB中,PM=PBsin∠PBM=2sinα;PN=PBcos∠PBM=2cosα,則
同理,在Rt△PNB中,PN=PBsin∠PBN=PBsin(∠PBA)=2sin(α),PM=2cos(α)α∈(0,),
∴四邊形PMBN的面積
∵α∈(0,),∴2α∈(,),
于是,當2α,即α時,四邊形PMBN的面積取得最大值.
科目:高中數(shù)學 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認為學生的旅游費用支出服從正態(tài)分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學生中有名女生, 名男生,現(xiàn)想選其中名學生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.
(1)求點的軌跡方程;
(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列滿足,其中,且為常數(shù).
(1)若是等差數(shù)列,且公差,求的值;
(2)若,且數(shù)列滿足對任意的都成立.
①求數(shù)列的前項之和;
②若對任意的都成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設二次函數(shù)的圖像過點和,且對于任意實數(shù),不等式恒成立
(1)求的表達式;
(2)設,若在上是增函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的左焦點為,左準線方程為.
(1)求橢圓的標準方程;
(2)已知直線交橢圓于, 兩點.
①若直線經(jīng)過橢圓的左焦點,交軸于點,且滿足, .求證: 為定值;
②若(為原點),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)設α∈(0,),則f()=2,求α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放且個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次2個單位的營養(yǎng)液,則有效時間最多可能持續(xù)幾天?
(2)若先投放2個單位的營養(yǎng)液,4天后再投放b個單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com