已知命題
函數(shù)
有極值;命題
函數(shù)
且
恒成立.若
為真命題,
為真命題,則
的取值范圍是
為真命題,
為真命題,可得
為假命題,
為真命題
為假命題,即函數(shù)
無極值,可得
它的導函數(shù)
無解,即
,
為真命題,即對任意的
都有不等式
恒成立,所以有
,令
,
,解得x=-1
,所以
在
單調(diào)遞增,
,所以
在
單調(diào)遞減,所以
的最大值就為
,所以
所以
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
若函數(shù)
f(
x)=
在[1,+∞
上為增函數(shù).
(Ⅰ)求正實數(shù)
a的取值范圍.
(Ⅱ)若
a=1,求征:
(
n∈N*且
n ≥ 2 )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
.
(1)若
是函數(shù)
的一個極值點,試求出
關于
的關系式(用
表示
),并確定
的單調(diào)區(qū)間;
(2)在(1)的條件下,設
,函數(shù)
.若存在
使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
已知函數(shù)
。
(1)當
時,求函數(shù)
的單調(diào)增區(qū)間;
(2)若對任意
, 恒有
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定義在R上的可導函數(shù)
的圖象如圖所示,則不等式
的解集為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)確定
上的單調(diào)性;
(2)設
在(0,2)上有極值,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
(1)求導數(shù)
; 并證明
有兩個不同的極值點
;
(2)若不等式
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
的導函數(shù)
,且
設
是方程
的兩根,則|
|的取值范圍為
A
B
C
D
查看答案和解析>>