(滿分12分)設函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個不同的零點,求實數(shù)的取值范圍。
(Ⅰ)實數(shù)的最小值為。(Ⅱ)

試題分析:(Ⅰ)要使得不等式能成立,只需。  
求導得:,        ………3分
∵函數(shù)的定義域為
時,,∴函數(shù)在區(qū)間上是減函數(shù);
時,,∴函數(shù)在區(qū)間(0,+∞)上是增函數(shù)。
,    ∴。故實數(shù)的最小值為。     ………6分
(Ⅱ)由得:

由題設可得:方程在區(qū)間上恰有兩個相異實根………8分
!,列表如下:







 

0

 


減函數(shù)

增函數(shù)

 
,
。
從而有,                 ………10分
畫出函數(shù)在區(qū)間上的草圖

易知要使方程在區(qū)間上恰有兩個相異實根,
只需:,即:。      ………12分
點評:利用導數(shù)研究函數(shù)單調(diào)性、確定函數(shù)最值、研究函數(shù)圖象,是導數(shù)的基本應用。本題將“恒成立”問題轉(zhuǎn)化成求函數(shù)最值問題,將函數(shù)零點問題,轉(zhuǎn)化成研究函數(shù)單調(diào)性、求最值問題,凸顯轉(zhuǎn)化與化歸數(shù)學的重要性。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)f (x)=x3-4xa,0<a<2.若f (x)的三個零點為x1,x2x3,且x1x2x3,則
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若m=0,A(a,f(a))、B(b,f(b))是函數(shù)f(x)圖象上不同的兩點,且a>b>0, 為f(x)的導函數(shù),求證:
(III)求證

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的大致圖象是(   )

A、                 B、                  C、                 D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知處有極值,其圖象在處的切線與直線平行.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若時,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
已知函數(shù),,.
(1)當時,若函數(shù)在區(qū)間上是單調(diào)增函數(shù),試求的取值范圍;
(2)當時,直接寫出(不需給出演算步驟)函數(shù) ()的單調(diào)增區(qū)間;
(3)如果存在實數(shù),使函數(shù))在
 處取得最小值,試求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),,,其中.
(I)求函數(shù)的導函數(shù)的最小值;
(II)當時,求函數(shù)的單調(diào)區(qū)間及極值;
(III)若對任意的,函數(shù)滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導函數(shù)的圖象大致是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)已知函數(shù)
(1)若函數(shù)上為增函數(shù),求實數(shù)的取值范圍;
(2)當時,求上的最大值和最小值;
(3)當時,求證對任意大于1的正整數(shù),恒成立.

查看答案和解析>>

同步練習冊答案