△ABC中,若cosC=2sinAsinB-1則△ABC的形狀一定是( 。
A、直角三角形
B、等邊三角形
C、等腰直角三角形
D、等腰三角形
考點:三角形的形狀判斷
專題:解三角形
分析:由內(nèi)角和定理得C=π-(A+B),利用兩角和差的余弦公式、誘導(dǎo)公式化簡式子,根據(jù)特殊角的余弦值判斷出角之間的關(guān)系,即可得三角形的形狀.
解答: 解:由A+B+C=π得,C=π-(A+B),則cosC=-cos(A+B),
所以cosC=2sinAsinB-1化為:-cos(A+B)=2sinAsinB-1,
即-cosAcosB+sinAsinB=2sinAsinB-1,
化簡得,cos(A-B)=1,
所以A=B,
則△ABC是等腰三角形,
故選:D.
點評:本題考查兩角和差的余弦公式、誘導(dǎo)公式的應(yīng)用,求得cos(A-B)=1,是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對任意0≤x≤1,f(x)遞減,都有f(x)≥0,則a=f(2010),b=f(
5
4
),c=-f(
1
2
)的大小關(guān)系是( 。
A、b<c<a
B、c<b<a
C、a<c<b
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱的底面半徑為2,高為3,用一個平面去截,若所截得的截面為橢圓,則橢圓的離心率的取值范圍為( 。
A、[
3
5
,1)
B、(0,
3
5
]
C、[
4
5
,1)
D、(0,
4
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f1(x)=sinx-cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2013(x)=( 。
A、sinx+cosx
B、sinx-cosx
C、-sinx+cosx
D、-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2x-1,x∈[-2,2]的值域為(  )
A、(
1
4
,
1
2
B、(1,2)
C、[-2,7]
D、[-1,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C的圓心為(6,
π
2
),半徑為5,直線θ=α(0≤α≤
π
2
,ρ∈R)被圓截得的弦長為8,則α的值為( 。
A、
π
6
B、
π
4
C、
π
3
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“雙曲線的方程為
x2
9
-
y2
16
=1”是“雙曲線的漸近線方程為y=±
4
3
x”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=AC=5,BC=6,則△ABC的面積為( 。
A、12B、15C、20D、25

查看答案和解析>>

同步練習(xí)冊答案