分析 (1)連BD,設(shè)AC交BD于O,則SO⊥AC,在正方形ABCD中,AC⊥BD,根據(jù)線面垂直的判定定理可知AC⊥平面SBD,SD?平面SBD,根據(jù)線面垂直的性質(zhì)可知AC⊥SD.
(2)設(shè)正方形邊長a,求出SD、OD,得到∠SDO,連OP,根據(jù)(Ⅰ)知AC⊥平面SBD,則AC⊥OP,且AC⊥OD,根據(jù)二面角平面角的定義可知∠POD是二面角P-AC-D的平面角,然后在三角形POD求出此角即可.
解答 解:(1)連BD,設(shè)AC交BD于O,由題意SO⊥AC.
在正方形ABCD中,AC⊥BD,
所以AC⊥平面SBD,得AC⊥SD.
(2)設(shè)正方形邊長a,則SD=$\sqrt{2}$a.
又OD=$\frac{\sqrt{2}}{2}$a,所以∠SDO=60°,
連OP,由(Ⅰ)知AC⊥平面SBD,
所以AC⊥OP,且AC⊥OD,
所以∠POD是二面角P-AC-D的平面角.
由SD⊥平面PAC,知SD⊥OP,
所以∠POD=30°,
即二面角P-AC-D的大小為30°.
點評 本題主要考查了線面垂直的性質(zhì),以及二面角的度量,考查空間想象能力、運算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{5}$i | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{3}$i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com