精英家教網 > 高中數學 > 題目詳情

【題目】某工廠產生的廢氣經過過濾后排放,在過濾過程中,污染物的數量p(單位:毫克/升)不斷減少,已知p與時間t(單位:小時)滿足p(t)=,其中p0t=0時的污染物數量.又測得當t∈[0,30]時,污染物數量的變化率是-10ln 2,則p(60)=(  )

A.150毫克/升B.300毫克/升

C.150ln 2毫克/升D.300ln 2毫克/升

【答案】C

【解析】

由當時,污染物數量的變化率是,求出,再利用關系式,可求 的值.

選C 因為當t∈[0,30]時,污染物數量的變化率是-10ln 2,所以-10ln 2=,所以p0=600ln 2,因為p(t)=,所以p(60)=600ln 2×2-2=150ln 2(毫克/升).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給定數列,若滿足),對于任意的,都有,則稱數列為“指數型數列”.

1)已知數列的通項公式為,試判斷數列是不是“指數型數列”;

2)已知數列滿足,,證明數列為等比數列,并判斷數列是否為“指數型數列”,若是給出證明,若不是說明理由;

3)若數列是“指數型數列”,且,證明數列中任意三項都不能構成等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數有下述四個結論:

是偶函數;②在區(qū)間單調遞減;

個零點;④的最大值為.

其中所有正確結論的編號是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓的左、右兩個焦點分別為,若為正三角形且周長為.

(1)求橢圓的標準方程;

(2)若過點且斜率為的直線與橢圓相交于不同的兩點,是否存在實數使成立,若存在,求出的值,若不存在,請說明理由;

(3)若過點的直線與橢圓相交于不同的兩點兩點,記的面積記為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,.

1)若直線與圓相切,求被圓所截得弦長取最小值時直線的斜率;

2時,表示圓,問是否存在一條直線,使得它和所有的圓都沒有公共點?如果存在,求出直線,若不存在,說明理由;

3)若滿足不等式和等式的點集是一條線段,求取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足.

1)若,求數列的通項公式;

2)若且數列為公比不為1的等比數列,求q的值,使數列也是等比數列;

3)若,數列有最大值M與最小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的中心在原點,為左、右焦點,焦距是實軸長的倍,雙曲線過點.

1)求雙曲線的標準方程;

2)若點在雙曲線上,求證:點在以為直徑的圓上;

3)在(2)的條件下,若直線交雙曲線于另一點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共有編號分別為1,2,3,4,5的五個座位,在甲同學不坐2號座位,乙同學不坐5號座位的條件下,甲、乙兩位同學的座位號相加是偶數的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左,右焦點分別為,且與短軸的一個端點Q構成一個等腰直角三角形,點P)在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓A,BC,DMN分別是弦AB,CD的中點

(1)求橢圓的方程

(2)求證:直線MN過定點R

(3)面積的最大值

查看答案和解析>>

同步練習冊答案