4.已知點P(0,5)及圓C:x2+y2+4x-12y+24=0.若直線l過P且被圓C截得的線段長為4$\sqrt{3}$,則直線l的一般式方程為3x-4y+20=0或x=0.

分析 求出圓心和半徑.設(shè)過該點的直線方程,求圓心到直線的距離與半徑和半弦長構(gòu)成勾股定理,解出斜率k,即得到直線方程.

解答 解:∵圓C:x2+y2+4x-12y+24=0,其圓心坐標(biāo)為(-2,6),半徑為r=4,點P(0,5),
設(shè)過P的直線方程為:y=kx+5,化為一般方程:kx-y+5=0
圓心到直線的距離d=$\frac{|Ax+By+C|}{\sqrt{{A}^{2}+{B}^{2}}}$.
∴d=$\frac{|-2k-6+5|}{\sqrt{1+{k}^{2}}}$
∴$(2{\sqrt{3})^{2}+d}^{2}={r}^{2}$,
解得:k=$\frac{3}{4}$,
所以3x-4y+20=0,
又因為過某一點可以做兩條直線截得的弦長相等,而k只有一個值,那么另一個k值不存在,又要過P,
所以:直線方程為:x=0,
故填:3x-4y+20=0或x=0.

點評 本題考查了弦長問題.過某一點截得的弦長問題:如果弦長等于直徑,直線過圓心.否則必有兩條直線截得的弦長相等,設(shè)過該點的直線方程,求圓心到直線的距離與半徑和半弦長構(gòu)成勾股定理,解出斜率k,如果k只有一個值,那么另一個k值不存在,直線與y軸平行.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$,若函數(shù)g(x)=f(x)-a恰有三個互不相同的零點x1,x2,x3,則x1x2x3的取值范圍是( 。
A.(-$\frac{1}{32}$,0)B.(-$\frac{1}{16}$,0)C.(0,$\frac{1}{32}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={y|y=|x|-2,x∈Z},B={x|x≥-2},則下列結(jié)論正確的是( 。
A.-3∈AB.A=BC.A∩B=AD.A∪B=Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,O為極點,已知圓C的圓心為$(1,\frac{π}{4})$,半徑r=1,點P在圓C上運動.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長度單位,且以極點O為原點,以極軸為x軸正半軸)中,若Q為線段OP的中點,求點Q軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-a(x-1)
(1)若函數(shù)f(x)在(1,+∞)是單調(diào)減函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,當(dāng)n∈N*時,證明:(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{3}}$)…(1+$\frac{1}{{2}^{n}}$)<e(其中(e≈2.718…即自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、小兩個同心圓,半徑分別為2cm,6cm,某人站在3m之外向此板投鏢,設(shè)投鏢擊中線上或沒有投中木板時都不算(可重投),問:
(1)投中大圓內(nèi)的概率是多少?
(2)投中小圓與大圓形成的圓環(huán)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知tan(α+$\frac{5π}{12}$)=2,tan($β+\frac{π}{6}$)=3,則tan(α-β+$\frac{π}{4}$)等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{7}$C.$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,若a2=b2-bc+c2,則A=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.原始社會時期,人們通過在繩子上打結(jié)來計算數(shù)量,即“結(jié)繩計數(shù)”.當(dāng)時有位父親,為了準(zhǔn)確記錄孩子的成長天數(shù),在粗細不同的繩子上打結(jié),由細到粗,滿七進一,那么孩子已經(jīng)出生510天.

查看答案和解析>>

同步練習(xí)冊答案