20.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則|$\overrightarrow{2a}$-$\overrightarrow$|=2.

分析 可由$(\overrightarrow{a}-\overrightarrow)⊥\overrightarrow{a}$得出$(\overrightarrow{a}-\overrightarrow)•\overrightarrow{a}=0$,這樣進(jìn)行向量數(shù)量積的運(yùn)算即可求出$\overrightarrow{a}•\overrightarrow$的值,進(jìn)而可求出$|2\overrightarrow{a}-\overrightarrow{|}^{2}$的值,從而可得出$|2\overrightarrow{a}-\overrightarrow|$的值.

解答 解:根據(jù)條件,∵$(\overrightarrow{a}-\overrightarrow)⊥\overrightarrow{a}$;
∴$(\overrightarrow{a}-\overrightarrow)•\overrightarrow{a}={\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow$=$2-\overrightarrow{a}•\overrightarrow=0$;
∴$\overrightarrow{a}•\overrightarrow=2$;
∴$|2\overrightarrow{a}-\overrightarrow{|}^{2}=4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=8-8+4=4;
∴$|2\overrightarrow{a}-\overrightarrow|=2$.
故答案為:2.

點(diǎn)評 考查向量垂直的充要條件,向量數(shù)量積的運(yùn)算及其計算公式,以及要求向量長度而求向量平方的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線y=cosx在點(diǎn)($\frac{π}{3}$,$\frac{1}{2}$)處的切線的斜率為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,兩個變量具有相關(guān)關(guān)系的是( 。
A.(1)(3)B.(1)(4)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}中,a1<0,S9=S12,若Sn有最小值,則n=(  )
A.10B.10或11C.11D.9或10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.隨著我市九龍江南岸江濱路建設(shè)的持續(xù)推進(jìn),未來市民將新增又一休閑好去處,據(jù)悉南江濱路建設(shè)工程規(guī)劃配套建造一個長方形公園ABCD,如圖所示,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成,已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬度分別為4m和10m.
(1)若休閑區(qū)的長A1B1=x m,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥-x}\\{x≤2}\end{array}\right.$表示的平面區(qū)域為S,點(diǎn)P(x,y)∈S,則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{3}{1-\sqrt{1-x}}$的定義域可用區(qū)間表示為(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(cos2x,$\sqrt{3}$sinx),$\overrightarrow$=(1,cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$+m,且當(dāng)x∈[0,$\frac{π}{6}$]時,f(x)的最小值為2.
(Ⅰ)求m的值,并求f(x)圖象的對稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)2]-f(x),x∈[0,$\frac{π}{6}$],求g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

同步練習(xí)冊答案