8.a(chǎn),b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時,AB與b成30°角;
②當(dāng)直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是②③.(填寫所有正確結(jié)論的編號)

分析 由題意知,a、b、AC三條直線兩兩相互垂直,構(gòu)建如圖所示的邊長為1的正方體,|AC|=1,|AB|=$\sqrt{2}$,斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.

解答 解:由題意知,a、b、AC三條直線兩兩相互垂直,畫出圖形如圖,
不妨設(shè)圖中所示正方體邊長為1,
故|AC|=1,|AB|=$\sqrt{2}$,
斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,
B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,
以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,
則D(1,0,0),A(0,0,1),直線a的方向單位向量$\overrightarrow{a}$=(0,1,0),|$\overrightarrow{a}$|=1,
直線b的方向單位向量$\overrightarrow$=(1,0,0),|$\overrightarrow$|=1,
設(shè)B點(diǎn)在運(yùn)動過程中的坐標(biāo)中的坐標(biāo)B′(cosθ,sinθ,0),
其中θ為B′C與CD的夾角,θ∈[0,2π),
∴AB′在運(yùn)動過程中的向量,$\overrightarrow{A{B}^{'}}$=(cosθ,sinθ,-1),|$\overrightarrow{A{B}^{'}}$|=$\sqrt{2}$,
設(shè)$\overrightarrow{A{B}^{'}}$與$\overrightarrow{a}$所成夾角為α∈[0,$\frac{π}{2}$],
則cosα=$\frac{|(-cosθ,-sinθ,1)•(0,1,0)|}{|\overrightarrow{a}|•|\overrightarrow{A{B}^{'}}|}$=$\frac{\sqrt{2}}{2}$|sinθ|∈[0,$\frac{\sqrt{2}}{2}$],
∴α∈[$\frac{π}{4}$,$\frac{π}{2}$],∴③正確,④錯誤.
設(shè)$\overrightarrow{A{B}^{'}}$與$\overrightarrow$所成夾角為β∈[0,$\frac{π}{2}$],
cosβ=$\frac{|\overrightarrow{A{B}^{'}}•\overrightarrow|}{|\overrightarrow{A{B}^{'}}|•|\overrightarrow|}$=$\frac{|(-cosθ,sinθ,1)•(1,0,0)|}{|\overrightarrow|•|\overrightarrow{A{B}^{'}}|}$=$\frac{\sqrt{2}}{2}$|cosθ|,
當(dāng)$\overrightarrow{A{B}^{'}}$與$\overrightarrow{a}$夾角為60°時,即α=$\frac{π}{3}$,
|sinθ|=$\sqrt{2}cosα$=$\sqrt{2}cos\frac{π}{3}$=$\frac{\sqrt{2}}{2}$,
∵cos2θ+sin2θ=1,∴cosβ=$\frac{\sqrt{2}}{2}$|cosθ|=$\frac{1}{2}$,
∵β∈[0,$\frac{π}{2}$],∴β=$\frac{π}{3}$,此時$\overrightarrow{A{B}^{'}}$與$\overrightarrow$的夾角為60°,
∴②正確,①錯誤.
故答案為:②③.

點(diǎn)評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=3x-($\frac{1}{3}$)x,則f(x)( 。
A.是奇函數(shù),且在R上是增函數(shù)B.是偶函數(shù),且在R上是增函數(shù)
C.是奇函數(shù),且在R上是減函數(shù)D.是偶函數(shù),且在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3
(1)求數(shù)列{an}通項(xiàng)公式;
(2){bn} 為各項(xiàng)非零的等差數(shù)列,其前n項(xiàng)和為Sn,已知S2n+1=bnbn+1,求數(shù)列$\left\{\frac{_{n}}{{a}_{n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P-ABCD的體積為$\frac{8}{3}$,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1 (a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{5}}{2}$x,且與橢圓$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1有公共焦點(diǎn),則C的方程為(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{10}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-1-alnx.
(1)若 f(x)≥0,求a的值;
(2)設(shè)m為整數(shù),且對于任意正整數(shù)n,(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<m,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°.
(1)證明:直線BC∥平面PAD;
(2)若△PCD面積為2$\sqrt{7}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB為半圓O的直徑,直線PC切半圓O于點(diǎn)C,AP⊥PC,P為垂足.
求證:(1)∠PAC=∠CAB;
(2)AC2 =AP•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標(biāo)x和y的數(shù)據(jù),并制成如圖,其中“*”表示服藥者,“+”表示未服藥者.
(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)y的值小于60的概率;
(2)從圖中A,B,C,D四人中隨機(jī)選出兩人,記ξ為選出的兩人中指標(biāo)x的值大于1.7的人數(shù),求ξ的分布列和數(shù)學(xué)期望E(ξ);
(3)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

同步練習(xí)冊答案