分析 由題意知,a、b、AC三條直線兩兩相互垂直,構(gòu)建如圖所示的邊長為1的正方體,|AC|=1,|AB|=$\sqrt{2}$,斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.
解答 解:由題意知,a、b、AC三條直線兩兩相互垂直,畫出圖形如圖,
不妨設(shè)圖中所示正方體邊長為1,
故|AC|=1,|AB|=$\sqrt{2}$,
斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,
B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,
以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,
則D(1,0,0),A(0,0,1),直線a的方向單位向量$\overrightarrow{a}$=(0,1,0),|$\overrightarrow{a}$|=1,
直線b的方向單位向量$\overrightarrow$=(1,0,0),|$\overrightarrow$|=1,
設(shè)B點(diǎn)在運(yùn)動過程中的坐標(biāo)中的坐標(biāo)B′(cosθ,sinθ,0),
其中θ為B′C與CD的夾角,θ∈[0,2π),
∴AB′在運(yùn)動過程中的向量,$\overrightarrow{A{B}^{'}}$=(cosθ,sinθ,-1),|$\overrightarrow{A{B}^{'}}$|=$\sqrt{2}$,
設(shè)$\overrightarrow{A{B}^{'}}$與$\overrightarrow{a}$所成夾角為α∈[0,$\frac{π}{2}$],
則cosα=$\frac{|(-cosθ,-sinθ,1)•(0,1,0)|}{|\overrightarrow{a}|•|\overrightarrow{A{B}^{'}}|}$=$\frac{\sqrt{2}}{2}$|sinθ|∈[0,$\frac{\sqrt{2}}{2}$],
∴α∈[$\frac{π}{4}$,$\frac{π}{2}$],∴③正確,④錯誤.
設(shè)$\overrightarrow{A{B}^{'}}$與$\overrightarrow$所成夾角為β∈[0,$\frac{π}{2}$],
cosβ=$\frac{|\overrightarrow{A{B}^{'}}•\overrightarrow|}{|\overrightarrow{A{B}^{'}}|•|\overrightarrow|}$=$\frac{|(-cosθ,sinθ,1)•(1,0,0)|}{|\overrightarrow|•|\overrightarrow{A{B}^{'}}|}$=$\frac{\sqrt{2}}{2}$|cosθ|,
當(dāng)$\overrightarrow{A{B}^{'}}$與$\overrightarrow{a}$夾角為60°時,即α=$\frac{π}{3}$,
|sinθ|=$\sqrt{2}cosα$=$\sqrt{2}cos\frac{π}{3}$=$\frac{\sqrt{2}}{2}$,
∵cos2θ+sin2θ=1,∴cosβ=$\frac{\sqrt{2}}{2}$|cosθ|=$\frac{1}{2}$,
∵β∈[0,$\frac{π}{2}$],∴β=$\frac{π}{3}$,此時$\overrightarrow{A{B}^{'}}$與$\overrightarrow$的夾角為60°,
∴②正確,①錯誤.
故答案為:②③.
點(diǎn)評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù),且在R上是增函數(shù) | B. | 是偶函數(shù),且在R上是增函數(shù) | ||
C. | 是奇函數(shù),且在R上是減函數(shù) | D. | 是偶函數(shù),且在R上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{10}$=1 | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com