4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,且其圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)g(x)=sinωx的圖象,則φ等于( 。
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的周期性,求得φ的值.

解答 解:函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為$\frac{2π}{ω}$=π,∴ω=2,
其圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)g(x)=sin(2x-$\frac{π}{3}$+φ)=sin2x的圖象,∴-$\frac{π}{3}$+φ=2kπ,k∈Z,
則φ=$\frac{π}{3}$,
故選:C.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在中國文字語言中有回文句,如:“中國出人才人出國中.”其實(shí),在數(shù)學(xué)中也有回文數(shù).回文數(shù)是指從左到右與從右到左讀都一樣的正整數(shù),如:3位回文數(shù):101,111,121,…,191,202,…,999.則5位回文數(shù)有( 。
A.648個(gè)B.720個(gè)C.900個(gè)D.1000個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.2名男生和3名女生共5名同學(xué)站成一排,則3名女生中有且只有2名女生相鄰的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x2-2x+a-1|-a2-2a.
(1)當(dāng)a=3時(shí),求f(x)≥-10的解集;
(2)若f(x)≥0對x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若空間中四個(gè)不重合的平面a1,a2,a3,a4滿足a1⊥a2,a2⊥a3,a3⊥a4,則下列結(jié)論一定正確的是( 。
A.a1⊥a4B.a1∥a4
C.a1與a4既不垂直也不平行D.a1與a4的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的兩個(gè)單位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,則( 。
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$⊥$\overrightarrow$C.|$\overrightarrow{a}$|=2|$\overrightarrow$||D.<$\overrightarrow{a}$,$\overrightarrow$>=60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)F的直線l:y=$\sqrt{3}x-4\sqrt{3}$與C只有一個(gè)公共點(diǎn),則C的焦距為8,C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等比數(shù)列{an},且a6+a8=$\int_0^4{\sqrt{16-{x^2}}dx}$,則a8(a4+2a6+a8)的值為( 。
A.π2B.2C.2D.16π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$a=\int_0^π{({sinx+cosx})dx}$,且${({{x^2}-\frac{1}{ax}})^n}$的展開式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,那么展開式中的所有項(xiàng)的系數(shù)之和是( 。
A.1B.$\frac{1}{256}$C.64D.$\frac{1}{64}$

查看答案和解析>>

同步練習(xí)冊答案