13.若m為正整數(shù),則${∫}_{-1}^{1}$x(x+sin2mx)dx=$\frac{2}{3}$.

分析 將被積函數(shù)變形,兩條定積分的可加性以及微積分基本定理求值.

解答 解:m為正整數(shù),則${∫}_{-1}^{1}$x(x+sin2mx)dx=${∫}_{-1}^{1}$(x2+xsin2mx)dx=2${∫}_{0}^{1}{x}^{2}dx$+${∫}_{-1}^{1}xsi{n}^{2}mxdx$=2×$\frac{1}{3}{x}^{3}{|}_{0}^{1}$+0=$\frac{2}{3}$;
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查定積分的計(jì)算;利用被積函數(shù)的原函數(shù)或者奇偶性求定積分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)={(\frac{1}{2})^x}$與g(x)=-|x|在區(qū)間(-∞,0)上的單調(diào)性為( 。
A.都是增函數(shù)B.f(x)為減函數(shù),g(x)為增函數(shù)
C.都是減函數(shù)D.f(x)為增函數(shù),g(x)為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓E:(x+$\sqrt{3}$)2+y2=16,點(diǎn)F($\sqrt{3}$,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(Ⅱ)直線l過點(diǎn)(1,1),且與軌跡Γ交于A,B兩點(diǎn),點(diǎn)M滿足$\overrightarrow{AM}$=$\overrightarrow{MB}$,點(diǎn)O為坐標(biāo)原點(diǎn),延長(zhǎng)線段OM與軌跡Γ交于點(diǎn)R,四邊形OARB能否為平行四邊形?若能,求出此時(shí)直線l的方程,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某四棱錐的三視圖如圖所示,則該四棱錐的側(cè)面積為( 。
A.8B.8+4$\sqrt{10}$C.2$\sqrt{10}$+$\sqrt{13}$D.4$\sqrt{10}$+2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“對(duì)稱數(shù)”是指從左到右讀與從右到左讀都一樣的正整數(shù),如121,666,54345等,則在所有的六位數(shù)中,不同的“對(duì)稱數(shù)”的個(gè)數(shù)是( 。
A.100B.900C.999D.1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教
(1)4個(gè)人分到甲學(xué)校,2個(gè)人分到乙學(xué)校,1個(gè)人分到丙學(xué)校,有多少種不同的分配方案?
(2)一所學(xué)校去4個(gè)人,另一所學(xué)校去2個(gè)人,剩下的一個(gè)學(xué)校去1個(gè)人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=$\sqrt{3}$f(x),x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,x∈[0,1)}\\{-2•(\frac{1}{3})^{|x-\frac{4}{3}|},x∈[1,2)}\end{array}\right.$,x
∈[-4,-2)時(shí),f(x)≥t2-$\frac{7}{3}$t恒成立,則實(shí)數(shù)t的取值范圍是(  )
A.[$\frac{1}{2}$,3)B.(-∞,$\frac{1}{2}$]∪(3,+∞)C.[$\frac{1}{3}$,2]D.(-∞,$\frac{1}{3}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$\frac{1+cosα}{sinα}$=2,則cosα-3sinα=( 。
A.-3B.3C.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某漁業(yè)公司為了解投資收益情況,調(diào)查了旗下的養(yǎng)魚場(chǎng)和遠(yuǎn)洋捕撈隊(duì)近10個(gè)月的利潤(rùn)情況.根據(jù)所收集的數(shù)據(jù)得知,近10個(gè)月總投資養(yǎng)魚場(chǎng)一千萬元,獲得的月利潤(rùn)頻數(shù)分布表如下:
月利潤(rùn)(單位:千萬元)-0.2-0.100.10.3
頻數(shù)21241
近10個(gè)月總投資遠(yuǎn)洋捕撈隊(duì)一千萬元,獲得的月利潤(rùn)頻率分布直方圖如下:

(Ⅰ)根據(jù)上述數(shù)據(jù),分別計(jì)算近10個(gè)月養(yǎng)魚場(chǎng)與遠(yuǎn)洋捕撈隊(duì)的月平均利潤(rùn);
(Ⅱ)公司計(jì)劃用不超過6千萬元的資金投資于養(yǎng)魚場(chǎng)和遠(yuǎn)洋捕撈隊(duì),假設(shè)投資養(yǎng)魚
場(chǎng)的資金為x(x≥0)千萬元,投資遠(yuǎn)洋捕撈隊(duì)的資金為y(y≥0)千萬元,且投資養(yǎng)魚場(chǎng)的資金不少于投資遠(yuǎn)洋捕撈隊(duì)的資金的2倍.試用調(diào)查數(shù)據(jù),給出公司分配投資金額的建議,使得公司投資這兩個(gè)項(xiàng)目的月平均利潤(rùn)之和最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案