【題目】已知橢圓的離心率為,且經(jīng)過點.
(1)求橢圓C的方程;
(2)設過點的直線l與橢圓C交于,兩點,求的取值范圍.
【答案】(1) (2)
【解析】
(1)將點代入橢圓方程,結合離心率公式,聯(lián)立方程組,求解即可得出橢圓的方程;
討論直線l的斜率為0和不為0兩種情況,當直線l的斜率為0時,,得出;
當直線l的斜率不為0時,設出直線l的方程,代入橢圓方程,利用韋達定理得出,的值,進而得出,換元令,得出,由二次函數(shù)的性質求出的取值范圍.
解:(1)因為橢圓C經(jīng)過點,所以,①
因為橢圓C的離心率為,所以,所以.②
由①②得,.
故橢圓C的方程為.
(2)①當直線l的斜率為0時,,所以.
②當直線l的斜率不為0時,設直線l的方程為.
聯(lián)立,整理得
則,
設,則,從而
因為,所以,即
綜上的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉向人才的競爭.吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標和緊迫任務.在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學生的月平均收入薪資和月平均期望薪資做了調查,數(shù)據(jù)如圖所示.
(1)若某大學畢業(yè)生從這15座城市中隨機選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;
(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(為參數(shù))曲線C2的參數(shù)方程為(,為參數(shù))在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=與C1,C2各有一個交點.當=0時,這兩個交點間的距離為2,當=時,這兩個交點重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值;
(2)設當=時,l與C1,C2的交點分別為A1,B1,當=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標平面中,已知點,,,…,,其中是正整數(shù),對平面上任一點,記為關于點的對稱點,為關于點的對稱點,…,為關于點的對稱點.
(1)求向量的坐標;
(2)當點在曲線上移動時,點的軌跡是函數(shù)的圖像,其中是以3為周期的周期函數(shù),且當時,.求以曲線為圖像的函數(shù)在上的解析式;
(3)對任意偶數(shù),用表示向量的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點, 是上異于,的點, .
(1)證明:平面平面;
(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面四邊形中,,是,中點,,,,將沿對角線折起至,使平面,則四面體中,下列結論不正確的是( )
A.平面
B.異面直線與所成的角為
C.異面直線與所成的角為
D.直線與平面所成的角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)設是函數(shù)的極值點,討論函數(shù)的單調性;
(2)若有兩個不同的零點和,且,
(i)求參數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.
(1)求直線和曲線的極坐標方程;
(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com