精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)證明:D1E⊥A1D;
(2)當E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1-EC-D的大小為
π4
分析:解法(一):
(1)通過觀察,根據三垂線定理易得:不管點E在AB的任何位置,D1E⊥A1D總是成立的.
(2)在立體幾何中,求點到平面的距離是一個常見的題型,同時求直線到平面的距離、平行平面間的距離及多面體的體積也常轉化為求點到平面的距離.本題可采用“等積法”:即利用三棱錐的換底法,通過體積計算得到點到平面的距離.本法具有設高不作高的特殊功效,減少了推理,但計算相對較為復雜.根據V三棱錐D1-ACE=V三棱錐E-D1AC既可以求得點E到面ACD1的距離.
(3)二面角的度量關鍵在于找出它的平面角,構造平面角常用的方法就是三垂線法.過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,
則∠DHD1為二面角D1-EC-D的平面角.
解法(二):
以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,設AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0).這種解法的好處就是:(1)解題過程中較少用到空間幾何中判定線線、面面、線面相對位置的有關定理,因為這些可以用向量方法來解決.(2)即使立體感稍差一些的學生也可以順利解出,因為只需畫個草圖以建立坐標系和觀察有關點的位置即可.
(1)因為
DA1
D1E
=(1,0,1)•(1,x,-1)=0,所以
DA1
D1E

(2)因為E為AB的中點,則E(1,1,0),從而
D1E
=(1,1,-1),
AC
=(-1,2,0)
,
AD1
=(-1,0,1)
,設平面ACD1的法向量為
n
=(a,b,c)
,從而
n
=(2,1,2)
,所以點E到平面AD1C的距離為h=
|
D1E
n
|
|
n
|
=
2+1-2
3
=
1
3

(3)設平面D1EC的法向量
n
=(a,b,c)
,可求得
n
=(2-x,1,2)
.,因為二面角D1-EC-D的大小為
π
4
,所以根據余弦定理可得AE=2-
3
時,二面角D1-EC-D的大小為
π
4
解答:精英家教網解法(一):
(1)證明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)設點E到面ACD1的距離為h,在△ACD1中,AC=CD1=
5
,AD1=
2
,
S△AD1C=
1
2
2
5-
1
2
=
3
2
,而S△ACE=
1
2
•AE•BC=
1
2
.∴VD1-AEC=
1
3
S△AEC•DD1=
1
3
S△AD1C•h
,
1
2
×1=
3
2
×h
,∴h=
1
3

(3)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,∴∠DHD1為二面角D1-EC-D的平面角.
設AE=x,則BE=2-x在Rt△D1DH中,∵∠DHD1=
π
4
,∴DH=1.
∵在Rt△ADE中,DE=
1+x2
,
∴在Rt△DHE中,EH=x,在Rt△DHC中CH=
3
,在Rt△CBE中CE=
x2-4x+5

x+
3
=
x2-4x+5
?x=2-
3

AE=2-
3
時,二面角D1-EC-D的大小為
π
4

解法(二):
以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,設AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)因為
DA1
D1E
=(1,0,1)•(1,x,-1)=0,所以
DA1
D1E

(2)因為E為AB的中點,則E(1,1,0),精英家教網從而
D1E
=(1,1,-1),
AC
=(-1,2,0)
,
AD1
=(-1,0,1)
,設平面ACD1的法向量為
n
=(a,b,c)
,
n
AC
=0
n
AD1
=0
也即
-a+2b=0
-a+c=0
,得
a=2b
a=c
,從而
n
=(2,1,2)
,所以點E到平面AD1C的距離為h=
|
D1E
n
|
|
n
|
=
2+1-2
3
=
1
3

(3)設平面D1EC的法向量
n
=(a,b,c)
,
CE
=(1,x-2,0),
D1C
=(0,2,-1),
D
D
 
1
=(0,0,1)
,
n
D1C
=0
n
CE
=0
?
2b-c=0
a+b(x-2)=0.
令b=1,∴c=2,a=2-x,
n
=(2-x,1,2)

依題意cos
π
4
=
|
n
DD1
|
|
n
|•|
DD1
|
=
2
2
?
2
(x-2)2+5
=
2
2

x1=2+
3
(不合,舍去),x2=2-
3

∴AE=2-
3
時,二面角D1-EC-D的大小為
π
4
點評:本小題主要考查棱柱,二面角、點到平面的距離和線面關系等基本知識,同時考查空間想象能力和推理、運算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數為:
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內接長方體,圓柱也叫長方體的外接圓柱.設長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側面積的最大值等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數學 來源:2010-2011年四川省成都市高二3月月考數學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =M為側棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案