6.若某空間幾何體的三視圖如圖所示.
(1)畫(huà)出幾何體的直觀圖(簡(jiǎn)圖);
(2)求該幾何體的表面積和體積.

分析 (1)利用三視圖的作法,直接畫(huà)出幾何體的直觀圖即可.
(2)利用幾何體的圖形,結(jié)合三視圖的數(shù)據(jù),求解幾何體的表面積與體積即可.

解答 解:(1)幾何體的直觀圖如圖:   
(2)幾何體是底面是直角三角形,直角邊長(zhǎng)為:$\sqrt{2}$,1,高為$\sqrt{2}$的三棱柱,
幾何體的體積V=$\frac{1}{2}×\sqrt{2}×1×\sqrt{2}$=1    
表面積為:S=2×$\frac{1}{2}$×$\sqrt{2}$×1+$\sqrt{2}×\sqrt{2}$+1×$\sqrt{2}$+$\sqrt{{1}^{2}+2}×\sqrt{2}$=2+2$\sqrt{2}$$+\sqrt{6}$.

點(diǎn)評(píng) 本題考查三視圖與直觀圖的畫(huà)法,幾何體的表面積與體積的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在菱形ABCD中,若AC=4,則$\overrightarrow{CA}$•$\overrightarrow{AB}$等于( 。
A.8B.-8
C.|${\overrightarrow{AB}}$|cosAD.與菱形的邊長(zhǎng)有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:直線l的方程為3x+4y-12=0,求滿(mǎn)足下列條件的直線l′的方程.
(1)l′與l平行,且l′與l間的距離等于5;
(2)l′與l垂直且l′與兩坐標(biāo)軸圍成的三角形面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知拋物線y2=4$\sqrt{3}$x的準(zhǔn)線過(guò)橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn),橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則該橢圓的方程為$\frac{x^2}{4}+{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f ( x )=ln x和g(x)=$\frac{1}{2}{x^2}$+a(其中a為常數(shù)),直線l與f ( x ) 和g ( x )的圖象都相切,且與f ( x ) 的圖象的切點(diǎn)的橫坐標(biāo)為1.
(Ⅰ)求l的方程和a的值;  
(Ⅱ)記h ( x )=f ( x2+1)-g ( x )-ln 2,求函數(shù)h ( x ) 的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=-x2+4ax在(-∞,-2]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)點(diǎn)A(1,0)和B(2,1)的直線的傾斜角為( 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某籃球運(yùn)動(dòng)員在上賽季的三分球命中率為25%,場(chǎng)均三分球出手10次,教練建議他在新賽季減少三分球出手次數(shù),若在新賽季的第一場(chǎng)比賽中該球員計(jì)劃出手3次,每次出手均相互獨(dú)立,設(shè)其命中X次.
(1)若將頻率視為概率,求X的分布列;
(2)請(qǐng)給該隊(duì)員一些建議,如何才能提高他在一場(chǎng)比賽中的三分球得分的期望?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ex-2x.
(1)求函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),曲線y=x2恒在曲線y=ex的下方;
(3)討論函數(shù)g(x)=x2-aex(a∈R)零點(diǎn)的個(gè)數(shù).
參考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

同步練習(xí)冊(cè)答案