20.銳角△ABC中,D為BC的中點,滿足∠BAD+∠C=90°,則角B,C的大小關(guān)系為B=C.(填“B<C”或“B=C”或B>C)

分析 根據(jù)三角形面積公式繼而正弦定理以及誘導(dǎo)公式,即可判斷.

解答 解:∵∠BAD+∠C=90°,
∴∠CAD+∠B=180°-(∠BAD+∠C)=90°,
設(shè)∠BAD=α,∠CAD=β,則∠C=90°-α,B=90°-β,
又D為BC中點,∴BD=CD,
∴S△ABD=S△ADC
∴$\frac{1}{2}$cADsinα=$\frac{1}{2}$bADsinβ,
∴csinα=bsinβ,
∴ccosC=bcosB,
由正弦定理得sinCcosC=sinBcosB,
即sin2C=sin2B,
∴2B+2C=π或2B=2C,
∵△ABC為銳角三角形,
∴B=C,
故答案為:B=C

點評 此題考查了三角形形狀的判斷,涉及的知識有正弦定理,二倍角的正弦函數(shù)公式,誘導(dǎo)公式,以及等腰三角形的判定,利用了分類討論及數(shù)形結(jié)合的思想.由∠BAD+∠C=90°,根據(jù)三角形的內(nèi)角和定理得到剩下的兩角相加也為90°是本題的突破點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=4sinx•cos2($\frac{x}{2}$+$\frac{π}{4}$)-cos2x.
(1)將函數(shù)y=f(2x)的圖象向右平移$\frac{π}{6}$個單位長度得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在x∈[$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(2)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足b=2,f(A)=$\sqrt{2}-1,\sqrt{3}$a=2bsinA,
B∈(0,$\frac{π}{2}$),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某校從學(xué)生會文藝部6名成員(其中男生4人,女生2人)中,任選3人參加學(xué)校舉辦的“慶元旦迎新春”文藝匯演活動.設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,則P(B|A)為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)S兩枚均勻的大小不同的骰子,記“兩顆骰子的點數(shù)和為8”為事件A,“小骰子出現(xiàn)的點數(shù)小于大骰子出現(xiàn)的點數(shù)”為事件B,則P(A|B),P(B|A)分別為( 。
A.$\frac{2}{15},\frac{2}{5}$B.$\frac{3}{14},\frac{3}{5}$C.$\frac{1}{3},\frac{1}{5}$D.$\frac{4}{5},\frac{4}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在[0,a](a>0)上隨機抽取一個實數(shù)x,若x滿足$\frac{x-2}{x+1}$<0的概率為$\frac{1}{2}$,則實數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(Ⅰ)將圓x2+y2=1上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.寫出C的參數(shù)方程;
(Ⅱ)極坐標(biāo)系下,求直線ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$與圓ρ=2的公共點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\frac{{ln({2x})}}{x}$,關(guān)于x的不等式f2(x)+af(x)>0只有兩個整數(shù)解,則實數(shù)a的取值范圍為(-ln2,-$\frac{ln6}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,0≤x≤$\frac{1}{2}$≤y≤1,則|x$\overrightarrow{a}$+y$\overrightarrow$+(1-x-y)$\overrightarrow{c}$|的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知兩組數(shù)據(jù)x,y的對應(yīng)值如下表,若已知x,y是線性相關(guān)的且線性回歸方程為:$\hat y=\hat bx+\hat a$,經(jīng)計算知:$\hat b=-1.4$,則$\hat a$=(  )
x45678
y1210986
A.-0.6B.0.6C.-17.4D.17.4

查看答案和解析>>

同步練習(xí)冊答案