A. | $\frac{1}{2}$或-1 | B. | 2 或$\frac{1}{2}$ | C. | 2 或1 | D. | 2 或-1 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,得到直線y=ax+z斜率的變化,從而求出a的取值.
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分ABC).
由z=y-ax得y=ax+z,即直線的截距最大,z也最大.
若a=0,此時y=z,此時,目標函數(shù)只在A處取得最大值,不滿足條件,
若a>0,目標函數(shù)y=ax+z的斜率k=a>0,要使z=y-ax取得最大值的最優(yōu)解不唯一,
則直線y=ax+z與直線2x-y+2=0平行,此時a=2,
若a<0,目標函數(shù)y=ax+z的斜率k=a<0,要使z=y-ax取得最大值的最優(yōu)解不唯一,
則直線y=ax+z與直線x+y-2=0,平行,此時a=-1,
綜上a=-1或a=2,
故選:D.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.注意要對a進行分類討論.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a>b,則a2>b2 | B. | 若a>b,c>d,則ac>bd | ||
C. | 若a<b<0,則$\frac{1}{a}$<$\frac{1}$ | D. | 若a>b>0,c<d<0,則$\frac{a}ttt5vld$<$\frac{c}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
男性 | 女性 | 合計 | |
反對 | 10 | ||
支持 | 8 | ||
合計 | 30 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0,010 | 0.005 | 0,001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com