精英家教網 > 高中數學 > 題目詳情
已知橢圓C的中心在坐標原點,焦點在x軸上,離心率e=
3
2
,且點P(-2,0)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A、B為橢圓C上的動點,當PA⊥PB時,求證:直線AB恒過一個定點.并求出該定點的坐標.
分析:(1)設橢圓的方程為:
x2
a2
+
y2
b2
=1(a>b>0)
,由題意得
c
a
=
3
2
,a=2,再由b2=a2-c2可求得c,b;
(2)分情況討論:①當直線l不垂直于x軸時,設AB:y=kx+m,A(x1,y1)B(x2,y2),與橢圓方程聯立方程組消掉y得x的一元二次方程,由韋達定理即及
PA
PB
=0可得m,k的關系式,分別代入直線方程可求得定點坐標,②當直線l垂直于x軸時,直線AB:x=-
6
5
,檢驗即可;
解答:解:(1)設橢圓的方程為:
x2
a2
+
y2
b2
=1(a>b>0)
,
由題意得
c
a
=
3
2
,a=2,所以c=
3

又b2=a2-c2=1,
所以橢圓的方程為:
x2
4
+y2=1

(2)①當直線l不垂直于x軸時,設AB:y=kx+m,A(x1,y1)B(x2,y2),
x2+4y2=4
y=kx+m
,得(1+4k2)x2+8kmx+4(m2-1)=0,x1+x2=-
8km
1+4k2
,x1x2=
4(m2-1)
1+4k2
,
PA
PB
=(x^+2)(x2+2)+y1y2=(1+k2)x1x2+(2+km)(x1+x2)+m2+4
=(1+k2)
4(m2-1)
1+4k2
+(2+km)
-8km
1+4k2
+m2+4=0

∴12k2+5m2-16km=0,即(6k-5m)(2k-m)=0,解得m=
6
5
k或m=2k
,
m=
6
5
k
時,AB:y=kx+
6
5
k
恒過定點(-
6
5
,0)

當m=2k時,AB:y=kx+2k恒過定點(-2,0),不符合題意舍去;
②當直線l垂直于x軸時,直線AB:x=-
6
5
,則AB與橢圓C相交于A(-
6
5
,-
4
5
)
,B(-
6
5
,
4
5
)

PA
PB
=(
4
5
,-
4
5
)•(
4
5
,
4
5
)=(
4
5
)2+(-
4
5
)(
4
5
)=0
,∵PA⊥PB,滿足題意,
綜上可知,直線AB恒過定點,且定點坐標為(-
6
5
,0)
點評:本題考查直線與圓錐曲線的位置關系及橢圓方程的求解,考查分類討論思想,考查學生分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C的中心在坐標原點,橢圓C任意一點P到兩個焦點F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設過(0,-2)的直線l與橢圓C交于A、B兩點,且
OA
OB
=0
(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F2,且|F1F2|=2,點P(1,
32
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F2M⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上且過點P(
3
1
2
)
,離心率是
3
2

(1)求橢圓C的標準方程;
(2)直線l過點E(-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為
1
2
,它的一個頂點恰好是拋物線y=
3
12
x2的焦點.
(I)求橢圓C的標準方程;
(II)若A、B是橢圓C上關x軸對稱的任意兩點,設P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設O為坐標原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的中心在坐標原點,它的一條準線為x=-
5
2
,離心率為
2
5
5

(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l交橢圓于A、B兩點,交y軸于M點,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習冊答案