已知二次函數(shù).
(1)設在上的最大值、最小值分別是、,集合,且,記,求的最小值.
(2)當時,
①設,不等式的解集為C,且,求實數(shù)的取值范圍;
②設 ,求的最小值.
(1)(2)①②當時,最小值為
當時,最小值為當時,最小值為
【解析】
試題分析:(1)方程存在兩等根,
,對稱軸,
時 ……5分
(2); ……10分
(3)
當時,最小值為
當時,最小值為
當時,最小值為。 ……16分
考點:本小題主要考查二次函數(shù)的圖象和性質(zhì)、二次函數(shù)在閉區(qū)間上的最值問題以及含絕對值的不等式的求解,考查了學生數(shù)形結合和分類討論等數(shù)學思想的綜合應用.
點評:求解二次函數(shù)的最值問題要結合圖象,千萬不要想當然地把端點處的值代入求最值,因為端點處的函數(shù)值不一定是最值;解含絕對值的不等式時,要通過分類討論將絕對值號去掉然后求解.
科目:高中數(shù)學 來源: 題型:
已知二次函數(shù),
(1)當時,在 [ – 1,1 ] 上的最大值為,求的最小值;
(2)對于任意的,總有,求a的取值范圍;
(3)若當時,記,令a = 1,求證:成立.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年蘇教版高中數(shù)學選修2-2 1.2導數(shù)的運算練習卷(解析版) 題型:選擇題
已知二次函數(shù)在x=1處的導數(shù)值為1,則該函數(shù)的最大值是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江西省高一上學期期中考試數(shù)學卷 題型:解答題
(本小題12分) 已知二次函數(shù)。
(1)指出圖像的開口方向、對稱軸方程、頂點坐標;
(2)畫出它的圖像,并說明其圖像由的圖像經(jīng)過怎樣平移得來;
(3)求函數(shù)的最大值或最小值;
(4)寫出函數(shù)的單調(diào)區(qū)間(不必證明)。
查看答案和解析>>
科目:高中數(shù)學 來源:2009-2010學年度新課標高三上學期數(shù)學單元測試12-理科-算法、復數(shù)、推理與證明 題型:解答題
已知二次函數(shù).
(1)若,試判斷函數(shù)零點個數(shù);
(2)若對且,,試證明,使
成立。
(3)是否存在,使同時滿足以下條件①對,且;②對,都有。若存在,求出的值,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com