已知焦點在x軸上的橢圓的離心率為
1
2
,長軸長為8,則橢圓的標準方程為(  )
A、
x2
16
+
y2
4
=1
B、
x2
4
+y2=1
C、
x2
16
+
y2
12
=1
D、
x2
4
+
y2
3
=1
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:運用橢圓的離心率公式和a,b,c的關(guān)系,求出a,b,即可得到橢圓方程.
解答: 解:焦點在x軸上的橢圓的離心率為
1
2
,長軸長為8,
即有
c
a
=
1
2
,a=4,即為c=2,b=
a2-c2
=2
3
,
則橢圓方程為
x2
16
+
y2
12
=1.
故選C.
點評:本題考查橢圓的方程和性質(zhì),考查離心率的公式和運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2x的焦點為F,與準線相切的圓C過點F并與拋物線相交于點M,若|MF|=
5
2
,則圓C的個數(shù)為( 。
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α∥β,a?α,有下列說法:正確的序號為
 

①a與β內(nèi)的所有直線平行;
②a與β內(nèi)無數(shù)條直線平行;
③a與β內(nèi)的任意一條直線都不垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的Z值為(  )
A、80B、480
C、1920D、3840

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)滿足f(x)滿足f(x)=-
1
f(x-1)
,當x∈[3,4]時,f(x)=x-2,則( 。
A、f(sin2)>f(cos2)
B、f(sin
π
3
)>f(cos
π
3
C、f(sin1)>f(cos1)
D、f(sin
3
2
)>f(cos
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
8(x+3),x≤0
,則f(-10)的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求y=
2
3
x3-2x2+3的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一圓經(jīng)過點A(2,-3)和B(-2,-5),且圓心C在直線l:x-2y-3=0上,
(1)求此圓的標準方程;
(2)判斷點M1(0,1),M2(2,-5)與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若sinθ+sin2θ=1,求cos2θ+cos4θ的值;
(2)已知3sinx+5cosx=5,求3cosx-5sinx的值.

查看答案和解析>>

同步練習冊答案