7.集合A={x|lnx≥0},B={x|x2≤9},則A∩B=( 。
A.(1,3)B.[1,3]C.[1,+∞]D.[e,3]

分析 求出A與B中x的范圍確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:lnx≥0=ln1,
解得:x≥1,即A=[1,+∞),
由B中不等式解得:-3≤x≤3,即B=[-3,3],
則A∩B=[1,3],
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平行四邊形ABCD的對角線分別為AC,BD,且$\overrightarrow{AE}=2\overrightarrow{EC}$,且$\overrightarrow{BF}=3\overrightarrow{FD}$,則(  )
A.$\overrightarrow{FE}=-\frac{1}{12}\overrightarrow{AB}-\frac{1}{12}\overrightarrow{AD}$B.$\overrightarrow{FE}=-\frac{1}{12}\overrightarrow{AB}-\frac{5}{12}\overrightarrow{AD}$C.$\overrightarrow{FE}=\frac{5}{12}\overrightarrow{AB}-\frac{1}{12}\overrightarrow{AD}$D.$\overrightarrow{FE}=\frac{5}{12}\overrightarrow{AB}-\frac{5}{12}\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在人壽保險業(yè)中,要重視某一年齡的投保人的死亡率,經(jīng)過隨機(jī)抽樣統(tǒng)計,得到某市一個投保人能活到75歲的概率為0.60,試問:
(1)若有3個投保人,求能活到75歲的投保人數(shù)ξ的分布列;
(2)3個投保人中至少有1人能活到75歲的概率.(結(jié)果精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=1且an+1-an=n+1(n∈N*),則數(shù)列{$\frac{1}{{a}_{n}}$}的前20項和為( 。
A.$\frac{40}{21}$B.$\frac{41}{20}$C.2D.$\frac{43}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用若干塊相同的小正方體搭成一個幾何體,從兩個角度觀察得到的圖形,則搭成該幾何體最少需要的小正方體的塊數(shù)是( 。〾K?
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.不論m取何實數(shù),直線(m+2)x-(m+1)y+m+1=0恒過定點(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點P在拋物線y2=4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和取得最小值時,點P的橫坐標(biāo)為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x0∈R,x02+4x0+6<0,則¬p為( 。
A.?x∈R,x02+4x0+6≥0B.?x0∈R,x02+4x0+6>0
C.?x∈R,x02+4x0+6>0D.?x0∈R,x02+4x0+6≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)y=f(x)滿足f(x)=2f($\frac{1}{x}$)+3x,則f(x)的解析式為f(x)=-x-$\frac{2}{x}$,(x≠0).

查看答案和解析>>

同步練習(xí)冊答案