分析 (1)由題意有3個投保人,能活到75歲的投保人數(shù)ξ的可能取值為0,1,2,3,且ξ~B(3,0.60),由此能求了ξ的分布列.
(2)3個投保人中至少有1人能活到75歲的概率p=1-P(ξ=0),由此能求出結(jié)果.
解答 解:(1)由題意有3個投保人,能活到75歲的投保人數(shù)ξ的可能取值為0,1,2,3,
且ξ~B(3,0.60),
P(ξ=0)=0.43=$\frac{8}{125}$,
P(ξ=1)=${C}_{3}^{1}•0.6•0.{4}^{2}$=$\frac{36}{125}$,
P(ξ=2)=${C}_{3}^{2}0.{6}^{2}•0.4$=$\frac{54}{125}$,
P(ξ=3)=0.63=$\frac{27}{125}$,
∴ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{8}{125}$ | $\frac{36}{125}$ | $\frac{54}{125}$ | $\frac{27}{125}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列的求法,是中檔題,求分布列的步驟:找到隨機變量可以取得值,依次求出各隨機變量值對應的概率,匯總得到分布列.
科目:高中數(shù)學 來源: 題型:選擇題
A. | sinA<sinC | B. | tanA<tanC | C. | cosA<cosC | D. | $\frac{1}{tanA}$<$\frac{1}{tanC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(1,+∞) | B. | (-1,1) | C. | (-∞,-1)∪(-1,1] | D. | (-∞,-1)∪(-1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com