有5名志愿者安排在3天服務(wù),每天安排3人,每人至少要服務(wù)一天,則有多少種安排方法?
考點:排列、組合的實際應(yīng)用
專題:應(yīng)用題,排列組合
分析:由題意,需要安排9個人次.由于每人至少要服務(wù)一天,每人至多要服務(wù)3天,故分類討論:(1)2人安排3次;(2)1人安排3次,2人安排2次;(3)1人安排1次,4人安排2次,即可得出結(jié)論.
解答: 解:由題意,需要安排9個人次.
∵每人至少要服務(wù)一天,每人至多要服務(wù)3天,
∴分類討論,共有3種情況(1)2人安排3次;(2)1人安排3次,2人安排2次;(3)1人安排1次,4人安排2次
(1)2人安排3次,有
C
2
5
A
3
3
=60種;
(2)1人安排3次,2人安排2次,有
C
1
5
C
2
4
C
1
3
C
1
2
=180種;
(3)1人安排1次,4人安排2次,有
C
1
5
C
2
4
C
1
2
A
3
3
=360種,
故共有60+180+360=600種安排方法.
點評:本題考查排列組合知識的運用,考查分類討論的數(shù)學(xué)思想,正確理解題意是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,點C是圓O上不同于A、B的一點,∠BAC=45°,點V是圓O所在平面外一點,且VA=VB=VC,E是AC的中點.
(Ⅰ)求證:OE∥平面VBC;
(Ⅱ)求證:VO⊥面ABC;
(Ⅲ)已知θ是平面VBC與平面VOE所形成的二面角的平面角,且0°<θ<90°,若OA=OV=1,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的一條直徑,過A作⊙O的切線,在切線上取一點C,使AC=AB,連接OC,與⊙O交于點D,BD的延長線與AC交于點E,求證:
(Ⅰ)∠CDE=∠DAE;
(Ⅱ)AE=CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,且AB=BC=2,點N為B1C1的中點,點P在棱A1C1的運動
(1)試問點P在何處時,AB∥平面PNC,并證明你的結(jié)論;
(2)在(1)的條件下,且AA1<AB,直線B1C與平面BCP的成角的正弦值為
10
10
,求二面角A-BP-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并確定取得最小值時x的值.列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)寫出f(x)=x+
4
x
,x∈(0,+∞)
的單調(diào)區(qū)間;
(2)證明:函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)單調(diào)遞減;
(3)若不等式2x-2k≤1-
8
x
對x<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將6人分成甲、乙、丙三組,一組1人,一組2人,一組3人,共有分法
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式4x2+9y2≥2kxy對一切正數(shù)x,y恒成立,則整數(shù)k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,m為正整數(shù),若a和b除以m的余數(shù)相同,則稱a和b對m同余.記a≡b(mod m),已知a=2+2×3+2×32+…+2×32003,b≡a(mod3),則b的值可以是
 
(寫出以下所有滿足條件的序號)
①1007;②2013;③3003;④6002.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線x=a(a>0)與曲線y=
x
及x軸所圍成的封閉圖形的面積為
2
3
,則a=
 

查看答案和解析>>

同步練習(xí)冊答案