如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(1)求證:BE⊥平面PCD;
(2)求二面角A一PD-B的大。

(1)證明過程詳見解析;(2).

解析試題分析:本題主要以四棱錐為幾何背景,考查線線的位置關(guān)系、線面垂直、二面角的求法等數(shù)學(xué)知識,考查幾何法和向量法相結(jié)合證明線面垂直,考查空間想象能力、推理論證能力、計(jì)算能力.第一問,利用向量法證明線面垂直,如圖,建立直角坐標(biāo)系,得到,,坐標(biāo),通過計(jì)算可得,,則,,利用線面垂直的判定得平面;第二問,利用向量法求二面角,計(jì)算出平面PAD的法向量和平面PBD的法向量,利用夾角公式求出夾角的余弦值,結(jié)合圖形判斷二面角為銳角,得到二面角的值.
試題解析:如圖,以B為原點(diǎn),分別以BC、BA、BP為x、y、z軸,建立空間直角坐標(biāo)系,則B(0,0,0),C(2,0,0),A(0,1,0),D(1,1,0),P(0,0,1),又DE=2PE,∴.(2分)

(1)∵,,

.
,,又,
平面.(8分)
(2)設(shè)平面的一個(gè)法向量為
則由,
,則
,設(shè)平面的法向量為
則由,得,
,則,

.
又二面角A—PD—B為銳二面角,故二面角A—PD—B的大小為60°.(13分)
考點(diǎn):1.向量法;2.線面垂直的判定;3.夾角公式;4.二面角的求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•天津)如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)是一個(gè)高為的四棱錐,底面是邊長為的正方形,頂點(diǎn)在底面上的射影是正方形的中心.是棱的中點(diǎn).試求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,將邊長為2的正方形ABCD沿對角線BD折成一個(gè)直二面角,且EA⊥平面ABD,AE=.

(1)若,求證:AB∥平面CDE;
(2)求實(shí)數(shù)的值,使得二面角AECD的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1

(1)證明:AB=AC
(2)設(shè)二面角A-BD-C為60°,求B1C與平面BCD所成的角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直三棱柱ABCA1B1C1中,D、E分別是AB、BB1的中點(diǎn),AA1=AC=CB=AB.

(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.

求證:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點(diǎn),AC=BC=BB1.

求證:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐中,底面為菱形,平面,分別是的中點(diǎn).

(1)證明:平面
(2)取,若上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊答案