已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若函數(shù)y=g(x)對任意x滿足g(x)=f(4-x),求證:當x>2,f(x)>g(x);
(3)若x1≠x2,且f(x1)=f(x2),求證:x1+x2>4.
[解] (1)∵f(x)=,∴f′(x)=.
令f′(x)=0,解得x=2.
x | (-∞,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - |
f(x) | 極大值 |
∴f(x)在(-∞,2)內(nèi)是增函數(shù),在(2,+∞)內(nèi)是減函數(shù).
∴當x=2時,f(x)取得極大值f(2)=.
(2)g(x)=f(4-x)=,令F(x)=f(x)-g(x)=-,
∴F′(x)=-=.
當x>2時,2-x<0,2x>4,從而e4-e2x<0,
∴F′(x)>0,F(x)在(2,+∞)是增函數(shù).
∴F(x)>F(2)=-=0,故當x>2時,f(x)>g(x)成立.
(3)∵f(x)在(-∞,2)內(nèi)是增函數(shù),在(2,+∞)內(nèi)是減函數(shù).
∴當x1≠x2,且f(x1)=f(x2),x1、x2不可能在同一單調(diào)區(qū)間內(nèi).
不妨設x1<2<x2,由(2)可知f(x2)>g(x2),又g(x2)=f(4-x2),∴f(x2)>f(4-x2).
∵f(x1)=f(x2),∴f(x1)>f(4-x2).
∵x2>2,4-x2<2,x1<2,且f(x)在區(qū)間(-∞,2)內(nèi)為增函數(shù),
∴x1>4-x2,即x1+x2>4.
科目:高中數(shù)學 來源:2011屆南京市金陵中學高三第四次模擬考試數(shù)學試題 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三上學期開學考試數(shù)學卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省高三第三次月考文科數(shù)學卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數(shù)學試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實根,下列命題中:
(1)方程f [f (x)]=x一定無實根;
(2)若a>0,則不等式f [f (x)]>x對一切實數(shù)x都成立;
(3)若a<0,則必存在實數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com