【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓(xùn)練次數(shù)與答題正確率的關(guān)系,對某校高三某班學(xué)生進行了關(guān)注統(tǒng)計,得到如表數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是的強化訓(xùn)練次數(shù)(保留整數(shù));
(2)若用()表示統(tǒng)計數(shù)據(jù)的“強化均值”(保留整數(shù)),若“強化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強化訓(xùn)練有效,請問這個班的強化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
, ,樣本數(shù)據(jù), ,…, 的標(biāo)準(zhǔn)差為
【答案】(1)答案見解析;(2)這個班的強化訓(xùn)練有效.
【解析】試題分析:(1)先由表格中的數(shù)據(jù)算出公式所需數(shù)據(jù),利用公式求出, ,可得回歸方程,將代入所求回歸方程即可預(yù)測答題正確率是的強化訓(xùn)練次數(shù);(2)計算出這次統(tǒng)計數(shù)據(jù)的“強化均值”的平均值,由平均數(shù)可得“強化均值”的方差,然后看標(biāo)準(zhǔn)差是否在區(qū)間內(nèi)即可得結(jié)果.
試題解析:(1)由所給數(shù)據(jù)計算得: , , , ,
, ,
所求回歸直線方程是,
由,得預(yù)測答題正確率是100%的強化訓(xùn)練次數(shù)為7次.
(2)經(jīng)計算知,這四組數(shù)據(jù)的“強化均值”分別為5,6,8,9,平均數(shù)是7,
“強化均值”的標(biāo)準(zhǔn)差是,
所以這個班的強化訓(xùn)練有效.
【方法點晴】本題主要考查線性回歸方程及其應(yīng)用,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關(guān)關(guān)系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為; 回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 為的中點.
(1)求證:平面平面;
(2)問在棱上是否存在點,使平面,若存在,請求出二面角的余弦值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是當(dāng)前主要的社交應(yīng)用之一,有著幾億用戶,覆蓋范圍廣,及時快捷,作為移動支付的重要形式,微信支付成為人們支付的重要方式和手段。某公司為了解人們對“微信支付”認可度,對年齡段的人群隨機抽取人進行了一次“你是否喜歡微信支付”的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組號 | 分組 | 喜歡微信支付的人數(shù) | 喜歡微信支付的人數(shù) 占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
第六組 |
(1)補全頻率分布直方圖,并求, , 的值;
(2)在第四、五、六組“喜歡微信支付”的人中,用分層抽樣的方法抽取人參加“微信支付日鼓勵金”活動,求第四、五、六組應(yīng)分別抽取的人數(shù);
(3)在(2)中抽取的人中隨機選派人做采訪嘉賓,求所選派的人沒有第四組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:
乘坐站數(shù) | |||
票價(元) |
現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為, .
(1)求甲、乙兩人付費相同的概率;
(2)設(shè)甲、乙兩人所付費用之和為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù) (萬人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知購買原材料的費用 (元)與數(shù)量 (袋)的關(guān)系為,
投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).
參考公式: , .
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.
(Ⅰ)求此人到達當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大種植面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)列中, , , .
(1)證明數(shù)列是等差數(shù)列,并求的通項公式;
(2)設(shè)數(shù)列的前項和為,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆北京市海淀區(qū)】如圖,三棱柱側(cè)面底面,
, 分別為棱的中點.
(Ⅰ)求證: ;
(Ⅱ)求三棱柱的體積;
(Ⅲ)在直線上是否存在一點,使得平面?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com