在△ABC中,“A>60°”是“sinA>
3
2
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義結(jié)合三角函數(shù)的定義和性質(zhì)進行判斷即可.
解答: 解:在△ABC中,若sinA>
3
2
,則60°<A<120°,即A>60°成立,
當A=150°時,滿足A>60°但sinA=
1
2
,則sinA>
3
2
不成立,
故“A>60°”是“sinA>
3
2
”的必要不充分條件,
故選:B
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)三角函數(shù)的性質(zhì)和取值范圍是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(1+x)3+(1+x)4+…+(1+x)n+2的展開式中x3的系數(shù)是( 。
A、Cn+33
B、Cn+23+1
C、Cn+23-1
D、Cn+23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法
①在△ABC中,若∠A>∠B,則sinA>sinB;
②等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則公比為
1
2
;
③已知a>0,b>0,a+b=1,則
2
a
+
3
b
的最小值為5+2
6

④在△ABC中,已知
a
cosA
=
b
cosB
=
c
cosC
,則∠A=60°.
正確的序號有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間兩點P1(2,3,5),P2(3,1,4)間的距離|P1P2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2A+
3
2
=2cosA.
(1)求角A的大小;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線3x-4y=6上,且與兩軸都相切的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={0,1,2},a=0,則下列關(guān)系式中正確的是( 。
A、a∈MB、a∉M
C、a⊆MD、{a}=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
1
5
,且α∈(
π
2
,π)
(Ⅰ)求tanα的值
(Ⅱ)求2sin2
α
2
+
π
6
)-sin(α+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4x-m•2x(m∈R).
(Ⅰ)當m≤1時,判斷函數(shù)f(x)在區(qū)間(0,1)內(nèi)的單調(diào)性,并用定義加以證明;
(Ⅱ)記g(x)=lgf(x),若g(x)在區(qū)間(0,1)上有意義,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案