已知Sn為數(shù)列{an}的前n項和,且Sn=2an+n2-3n-2(n∈N*)
(I)求證:數(shù)列{an-2n}為等比數(shù)列;
(II)設(shè)bn=an•cosnπ,求數(shù)列{bn}的前n項和Pn.
解:(I)∵S
n=2a
n+n
2-3n-2①∴S
n+1=2a
n+1+(n+1)
2-3(n+1)-2
兩式相減,得a
n+1=2a
n+1-2a
n+2n-2,∴a
n+1=2a
n-2n+2
故a
n+1-2(n+1)=2(a
n-2n),又在①式中令n=1得a
1=4,∴a
1-2≠0∴
,
∴{a
n-2n}為等比數(shù)列
(II)由(I)知:a
n-2n=2•2
n-1,∴a
n=2
n+2n且cosnπ=(-1)
n當n為偶數(shù)時,設(shè)n=2k(k∈N
*)
則P
n=b
1+b
2+…+b
n=(b
1+b
3+…+b
2k-1)+(b
2+b
4+…+b
2k)={-(2+2×1)-(2
3+2×3)-…-[2
2k-1+2(2k-1)]}+[(2
2+2×2)+(2
4+2×4)+…+(2
2k+2k)]=-(2+2
3+…+2
2k-1)-2[1+3+…+(2k-1)]+(2
2+2
4+…+2
2k)+2(2+4+…+2k)=-(2-2
2+2
3-2
4+…+2
2k-1-2
2k)+2[-1+2-3+4-…-(2k-1)+2k]=
=
當n為奇數(shù)時,設(shè)n=2k-1(k∈N
*),同理可得
=
=
綜上所述,
分析:(I)將S
n=2a
n+n
2-3n-2利用數(shù)列中a
n,Sn的關(guān)系進行轉(zhuǎn)化構(gòu)造出新數(shù)列{a
n-2n},再據(jù)其性質(zhì)證明.
(Ⅱ)將(I)中所求的a
n代入bn,分組求和法求和.
點評:本題考查等比數(shù)列的判斷、數(shù)列求和,轉(zhuǎn)化,計算的能力.