18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},0≤x<1}\\{lnx+e,1≤x≤e}\end{array}\right.$在區(qū)間[0,e]上隨機(jī)取一個(gè)實(shí)數(shù)x,則f(x)的值不小于常數(shù)e的概率是(  )
A.$\frac{1}{e}$B.1-$\frac{1}{e}$C.$\frac{e}{1+e}$D.$\frac{1}{1+e}$

分析 1≤x≤e,e≤f(x)≤1+e,以長(zhǎng)度為測(cè)度,即可求出概率.

解答 解:由題意,0≤x<1,f(x)<e,1≤x≤e,e≤f(x)≤1+e,
∵f(x)的值不小于常數(shù)e,
∴1≤x≤e,
∴所求概率為$\frac{e-1}{e}$=1-$\frac{1}{e}$,
故選B.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查分段函數(shù),確定以長(zhǎng)度為測(cè)度是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知$\frac{c}{b-a}=\frac{sinA+sinB}{sinA+sinC}$.
(1)求角B的大;
(2)若b=$2\sqrt{2}$,a+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某班級(jí)有50名同學(xué),一次數(shù)學(xué)測(cè)試平均成績(jī)是92,如果學(xué)號(hào)為1號(hào)到30號(hào)的同學(xué)平均成績(jī)?yōu)?0,則學(xué)號(hào)為31號(hào)到50號(hào)同學(xué)的平均成績(jī)?yōu)?5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z=-2+i(i是虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則|(2+z)•$\overline{z}$|等于(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5$\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}&{\;}\\{2x+y-6≤0}&{\;}\\{0≤y≤3}&{\;}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若點(diǎn)P到直線y=3的距離比到點(diǎn)F(0,-2)的距離大1,則點(diǎn)P的軌跡方程為(  )
A.y2=8xB.y2=-8xC.x2=8yD.x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某學(xué)校的平面示意圖為如下圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學(xué)區(qū),AB,BC,CD,DE,EA,BE為學(xué)校的主要道路(不考慮寬度).$∠BCD=∠CDE=\frac{2π}{3}$,$∠BAE=\frac{π}{3},DE=3BC=3CD=\frac{9}{10}km$.
(1)求道路BE的長(zhǎng)度;
(2)求生活區(qū)△ABE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn),$\overrightarrow{PM}=λ\overrightarrow{PC}(0<λ<1)$,試確定λ的值,使二面角P-FM-B的余弦值為$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,則z=x+3y的最大值為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案