7.已知M是圓周上的一個定點,若在圓周上任取一點N,連接MN,則弦MN的長不小于圓半徑的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 根據(jù)已知中A是圓上固定的一定點,在圓上其他位置任取一點B,連接A、B兩點,它是一條弦,我們求出B點位置所有基本事件對應的弧長,及滿足條件AB長大于半徑的基本事件對應的弧長,代入幾何概型概率計算公式,即可得到答案

解答 解:在圓上其他位置任取一點N,設圓半徑為R,
則N點位置所有情況對應的弧長為圓的周長2πR,
其中滿足條件MN的長度不小于半徑長度的對應的弧長為 $\frac{2}{3}$•2πR,
則AB弦的長度大于等于半徑長度的概率P=$\frac{\frac{2}{3}•2πR}{2πR}=\frac{2}{3}$;
故選D.

點評 本題考查的知識點是幾何概型,其中根據(jù)已知條件計算出所有基本事件對應的幾何量及滿足條件的基本事件對應的幾何量是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.若定義在R上的函數(shù)$f(x)={log_3}({2x+\sqrt{4{x^2}+a}})$為奇函數(shù),則實數(shù)a的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=2lnx+x2-ax,a∈R.
(1)若函數(shù)y=f(x)在(0,+∞)上單調遞增,求實數(shù)a的取值范圍;
(2)若a=e,解不等式:f(x)<2;
(3)求證:當a>4時,函數(shù)y=f(x)只有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.記函數(shù)y=ex在x=n(n=1,2,3,…)處的切線為ln.若切線ln與ln+1的交點坐標為(An,Bn),那么( 。
A.數(shù)列{An}是等差數(shù)列,數(shù)列{Bn}是等比數(shù)列
B.數(shù)列{An}與{Bn}都是等差數(shù)列
C.數(shù)列{An}是等比數(shù)列,數(shù)列{Bn}是等差數(shù)列
D.數(shù)列{An}與{Bn}都是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.將函數(shù)y=sin(2x+$\frac{π}{6}$)圖象上的點M(θ,$\frac{\sqrt{3}}{2}$)(0<θ<$\frac{π}{4}$)向右平移t(t>0)個單位長度得到點M′.若M′位于函數(shù)y=sin2x的圖象上,則( 。
A.θ=$\frac{π}{12}$,t的最小值為$\frac{π}{12}$B.θ=$\frac{π}{12}$,t的最小值為$\frac{π}{6}$
C.θ=$\frac{π}{6}$,t的最小值為$\frac{π}{6}$D.θ=$\frac{π}{6}$,t的最小值為$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在實數(shù)集R中定義一種運算“*”,對任意給定的a,b∈R,a*b為唯一確定的實數(shù),且具有性質:
(1)對任意a,b∈R,a*b=b*a;(2)對任意a∈R,a*0=a;(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.關于函數(shù)f(x)=(3x)*$\frac{1}{3x}$的性質,有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調遞增區(qū)間為(-∞,-$\frac{1}{3}$),($\frac{1}{3}$,+∞).
其中所有正確說法的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知F1,F(xiàn)2分別是橢圓mx2+y2=m(0<m<1)的左、右焦點,P為橢圓上任意一點,若$\frac{|\overrightarrow{P{F}_{2}}{|}^{2}+|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{1}}|}$的最小值為$\frac{4}{3}$,則橢圓的離心率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=2alnx+x2-(a+4)x+1(a為常數(shù))
(1)若a>0,討論f(x)的單調性;
(2)若對任意的 a∈(1,$\sqrt{2}$),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a-a2)+2a ln$\frac{4}{e}$成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.渝州集團對所有員工進行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結合這次測試成績對員工的績效獎金進行調整(績效獎金方案如表),若以甲部門這10人的樣本數(shù)據(jù)來估計該部門總體數(shù)據(jù),且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于3a的人數(shù)為ξ,求ξ的分布列及數(shù)學期望.
 分數(shù)[60,70)[70,80)[80,90)[90,100]
 獎金 a 2a 3a 4a

查看答案和解析>>

同步練習冊答案