【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如表所示:
(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計 | |
不支持 | |||
支持 | |||
總計 |
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù)的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.(1)寫出函數(shù)的一個“保值”區(qū)間為_____________;(2)若函數(shù)存在“保值”區(qū)間,則實數(shù)的取值范圍為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),且曲線在點處的切線垂直于直線.
(1)求的值及此時的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)于下表中,通過散點圖可以看出樣本點分布在一條指數(shù)型函數(shù)y=的圖象的周圍.
(1)試求出y關(guān)于x的上述指數(shù)型的回歸曲線方程(結(jié)果保留兩位小數(shù));
(2)試用(1)中的回歸曲線方程求相應(yīng)于點(24,17)的殘差.(結(jié)果保留兩位小數(shù))
溫度x(°C) | 20 | 22 | 24 | 26 | 28 | 30 |
產(chǎn)卵數(shù)y(個) | 6 | 9 | 17 | 25 | 44 | 88 |
z=lny | 1.79 | 2.20 | 2.83 | 3.22 | 3.78 | 4.48 |
幾點說明:
①結(jié)果中的都應(yīng)按題目要求保留兩位小數(shù).但在求時請將的值多保留一位即用保留三位小數(shù)的結(jié)果代入.
②計算過程中可能會用到下面的公式:回歸直線方程的斜率==,截距.
③下面的參考數(shù)據(jù)可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()是奇函數(shù).
(1)求實數(shù)的值;
(2)若,,求的取值范圍.
(3)若,且在上恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓為左右焦點,為短軸端點,長軸長為4,焦距為,且,的面積為.
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)動直線橢圓有且僅有一個公共點,且與直線相交于點.試探究:在坐標平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在求出點的坐標,若不存在.請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,分別為內(nèi)角所對的邊,且滿足,
(I)求C的大。
(II)現(xiàn)給出三個條件:①;②;③.試從中選擇兩個可以確定的條件,寫出你的選擇并以此為依據(jù)求的面積S.(只寫出一種情況即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(單位:元) | 165 | 142 | 148 | 125 | 150 |
學(xué)校計劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.
(1)若與成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?
(2)假設(shè)甲、乙、丙三名學(xué)生均獲獎,且各自獲一等獎和二等獎的可能性相同,求三人獲得獎學(xué)金之和不超過1000元的概率.
附:回歸方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右焦點分別為,且關(guān)于直線的對稱點在直線上.
(1)求橢圓的離心率;
(2)若的長軸長為且斜率為的直線交橢圓于,兩點,問是否存在定點,使得,的斜率之和為定值?若存在,求出所有滿足條件的點坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com