1.設(shè)p:0<x<5,q:-5<x-2<5,那么p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 化簡不等式,即可判斷出結(jié)論.

解答 解:由q:-5<x-2<5,可得:-3<x<7.
由p⇒q,由q推不出p.
那么p是q的充分不必要條件.
故選:A.

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知2a+b-ab=0(a>0,b>0),當(dāng)ab取得最小值時,曲線$\frac{x|x|}{a}-\frac{y|y|}=1$上的點到直線$y=\sqrt{2}x$的距離的取值范圍為(0,$\frac{2\sqrt{6}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求由曲線y=x2+1與y=3x-1,x=0,x=2所圍成的平面圖形的面積(畫出圖形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sinα-cosα=$\frac{{\sqrt{10}}}{5}$,α∈(π,2π),
(1)求sinαcosα的值;
(2)求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點.
( I)若PA=PD,求證:平面PQB⊥平面PAD;
( II)若平面APD⊥平面ABCD,且PA=PD=AD=2,線段BC的中點為M,求M到平面APB的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}是各項均不為0的等差數(shù)列,Sn為其前n項和,且滿足an2=S2n-1,bn=$\frac{1}{a{{\;}_{n}a}_{n+1}}$.
(1)求數(shù)列{an}、{bn}的通項公式及其前n項和Tn;
(2)在數(shù)列{bn}中,是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn依次成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=-1+logn(x+1)經(jīng)過的定點F(與n無關(guān))恰為拋物線y=ax2的焦點,則點F的坐標(biāo)是(0,-1); a=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則φ的值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知tanα=3,計算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.
(2)已知$tanθ=-\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

同步練習(xí)冊答案