分析 (1)根據(jù)兩角和差的正弦公式以及正弦定理進(jìn)行化簡即可,求∠A的大。
(2)根據(jù)余弦定理和基本不等式以及三角形的面積公式即可求出答案.
解答 解:(Ⅰ)∵cosC+$\sqrt{3}$sinC=$\frac{b+c}{a}$,
∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC,
∴sinAcosC+$\sqrt{3}$sinAsinC=sin(A+C)+sinC
∴$\sqrt{3}$sinAsinC=cosAsinC+sinC,
∵sinC≠0,
∴$\sqrt{3}$sinA=cosA+1
∴sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
∵A∈(0,π),
∴A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴A-$\frac{π}{6}$=$\frac{π}{6}$,
∴A=$\frac{π}{3}$;
(2)∵a=$\sqrt{3}$,A=$\frac{π}{3}$,由余弦定理可得a2=b2+c2+2bccosA,
∴3=b2+c2+bc≥2bc+bc=3bc
∴bc≤1,
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
故△ABC面積的最大值為$\frac{\sqrt{3}}{4}$
點(diǎn)評(píng) 本題考查了兩角和差的正弦公式,以及三角函數(shù)的性質(zhì),以及正弦定理、余弦定理和三角形的面積公式和基本不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,2) | C. | (2,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com