A. | 14π | B. | 12π | C. | 10π | D. | 8π |
分析 先根據(jù)題意得出側(cè)棱SA,SB,SC兩兩垂直,再根據(jù)三角形面積公式,解方程組得SA=2,SB=1,SC=3,進(jìn)而算出以SA、SB、SC為長、寬、高的長方體的對角線長為$\sqrt{14}$,從而得到三棱錐外接球R=$\frac{\sqrt{14}}{2}$,最后用球的表面積公式,可得此三棱錐外接球表面積.
解答 解:由題意得,側(cè)棱SA,SB,SC兩兩垂直,
設(shè)SA=x,SB=y,SC=z,則
∵△SAB,△SBC,△SAC都是以S為直角頂點(diǎn)的直角三角形,面△SAB,△SBC,△SAC的面積分別為1,$\frac{3}{2}$,3
∴$\left\{\begin{array}{l}{xy=2}\\{yz=3}\\{xz=6}\end{array}\right.$,解之得:x=2,y=1,z=3即SA=2,SB=1,SC=3,
∵側(cè)棱SA,SB,SC兩兩垂直,
∴以SA、SB、SC為過同一頂點(diǎn)的3條棱作長方體,該長方體的對角線長為$\sqrt{{2}^{2}+{1}^{2}+{3}^{2}}$=$\sqrt{14}$,恰好等于三棱錐外接球的直徑
由此可得外接球的半徑R=$\frac{\sqrt{14}}{2}$,
∴此三棱錐外接球表面積為S=4πR2=14π
故選A.
點(diǎn)評 本題給出特殊三棱錐,求它的外接球表面積,著重考查了空間垂直關(guān)系的性質(zhì)和多面體的外接球等知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -b+4 | B. | -b+2 | C. | b-2 | D. | b+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3π | B. | 9π | C. | $\frac{9π}{2}$ | D. | $\frac{7π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | 6+(2+$\sqrt{13}$)π | D. | (4+2$\sqrt{13}$)π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8$\sqrt{6}$π | B. | $\frac{27\sqrt{3}π}{2}$ | C. | $\frac{7\sqrt{7}π}{6}$ | D. | 10$\sqrt{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{5}{4}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com