用一塊鋼錠澆鑄一個(gè)厚度均勻,且全面積為的正四棱錐形有蓋容器(如圖),設(shè)容器的高為hm,蓋子邊長為am

  (1)求a關(guān)于h的函數(shù)解析式;

 。2)設(shè)容器的容積為,則當(dāng)h為何值時(shí),V最大?并求出V的最大值

 。ㄇ蠼獗绢}時(shí),不計(jì)容器的厚度)

 

答案:
解析:

解:(1)設(shè)為正四棱錐側(cè)面三角形的高,

  ,

  

  (2)由,

  ∵ 

  ∴  ,當(dāng)且僅當(dāng)時(shí),V取最大值

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)用一塊鋼錠澆鑄一個(gè)厚度均勻,且全面積為2平方米的正四棱錐形有蓋容器(如圖),設(shè)容器的高為h米,蓋子邊長為a米.
(1)求a關(guān)于h的函數(shù)解析式;
(2)設(shè)容器的容積為V立方米,則當(dāng)h為何值時(shí),V最大?求出V的最大值.(求解本題時(shí),不計(jì)容器的厚度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用一塊鋼錠澆鑄一個(gè)厚度均勻,且全面積為2平方米的正四棱錐形有蓋容器(如圖),設(shè)容器的高為h米,蓋子邊長為a米.
(1)求a關(guān)于h的函數(shù)解析式;
(2)設(shè)容器的容積為V立方米,則當(dāng)h為何值時(shí),V最大?求出V的最大值.
(求解本題時(shí),不計(jì)容器的厚度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

用一塊鋼錠澆鑄一個(gè)厚度均勻,且全面積為2平方米的正四棱錐形有蓋容器(如圖),設(shè)容器的高為h米,蓋子邊長為a米.
(1)求a關(guān)于h的函數(shù)解析式;
(2)設(shè)容器的容積為V立方米,則當(dāng)h為何值時(shí),V最大?求出V的最大值.
(求解本題時(shí),不計(jì)容器的厚度)
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海高考真題 題型:解答題

用一塊鋼錠澆鑄一個(gè)厚度均勻,且全面積為2平方米的正四棱錐形有蓋容器(如圖),設(shè)容器的高為h米,蓋子邊長為a米,
(1)求a關(guān)于h的函數(shù)解析式;
(2)設(shè)容器的容積為V立方米,則當(dāng)h為何值時(shí),V最大?求出V的最大值.
(求解本題時(shí),不計(jì)容器的厚度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2001年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

用一塊鋼錠澆鑄一個(gè)厚度均勻,且全面積為2平方米的正四棱錐形有蓋容器(如圖),設(shè)容器的高為h米,蓋子邊長為a米.
(1)求a關(guān)于h的函數(shù)解析式;
(2)設(shè)容器的容積為V立方米,則當(dāng)h為何值時(shí),V最大?求出V的最大值.
(求解本題時(shí),不計(jì)容器的厚度)

查看答案和解析>>

同步練習(xí)冊答案