A. | ρ=sinθ | B. | ρ=1 | C. | ρcosθ=-1 | D. | ρsinθ=-1 |
分析 先求出點(diǎn)P的直角坐標(biāo)為(-1,0),從而求出l的直角坐標(biāo)方程是x=-1,由此能求出直線(xiàn)l的極坐標(biāo)方程.
解答 解:∵在極坐標(biāo)系中,點(diǎn)A(1,π),
∴點(diǎn)P的直角坐標(biāo)為(-1,0),
∴l(xiāng)的直角坐標(biāo)方程是x=-1,
化為極坐標(biāo)方程化為 ρcosθ=-1,
故選:C.
點(diǎn)評(píng) 本題考查直線(xiàn)的極坐標(biāo)方程的求法,考查直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 1或2 | D. | 2或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{2\sqrt{2}}{3}$ | D. | 1+$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b⇒am2>bm2 | B. | $\frac{a}{c}>\frac{c}$⇒a>b | ||
C. | ac2>bc2⇒a>b | D. | a2>b2,ab>0⇒$\frac{1}{a}<\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com