A. | $e>\sqrt{2}$ | B. | $1<e<\sqrt{3}$ | C. | $e>\sqrt{5}$ | D. | $1<e<\sqrt{5}$ |
分析 根據(jù)已知直線的斜率,求出漸近線的斜率范圍,推出a,b的關(guān)系,然后求出離心率的范圍.
解答 解:依題意,斜率為2的直線l過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
的右焦點(diǎn)且與雙曲線的左右兩支分別相交,
結(jié)合圖形分析可知,雙曲線的一條漸近線的斜率$\frac{a}$必大于2,
即$\frac{a}$>2,
因此該雙曲線的離心率e=$\frac{c}{a}$═$\sqrt{1+(\frac{a})^{2}}$>$\sqrt{1+4}$=$\sqrt{5}$.
故選:C.
點(diǎn)評 本題考查雙曲線的方程和性質(zhì),主要是離心率的求法,注意運(yùn)用直線的斜率,考查轉(zhuǎn)化思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{12}$h | B. | $\frac{3}{4}$h | C. | $\frac{1}{2}$h | D. | h |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{4\sqrt{2}}}{9}$ | B. | $-\frac{7}{9}$ | C. | $\frac{4\sqrt{2}}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com