8.直線過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn),斜率為2,若與雙曲線的兩個交點(diǎn)分別在左右兩支上,則雙曲線離心率e的取值范圍是( 。
A.$e>\sqrt{2}$B.$1<e<\sqrt{3}$C.$e>\sqrt{5}$D.$1<e<\sqrt{5}$

分析 根據(jù)已知直線的斜率,求出漸近線的斜率范圍,推出a,b的關(guān)系,然后求出離心率的范圍.

解答 解:依題意,斜率為2的直線l過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
的右焦點(diǎn)且與雙曲線的左右兩支分別相交,
結(jié)合圖形分析可知,雙曲線的一條漸近線的斜率$\frac{a}$必大于2,
即$\frac{a}$>2,
因此該雙曲線的離心率e=$\frac{c}{a}$═$\sqrt{1+(\frac{a})^{2}}$>$\sqrt{1+4}$=$\sqrt{5}$.
故選:C.

點(diǎn)評 本題考查雙曲線的方程和性質(zhì),主要是離心率的求法,注意運(yùn)用直線的斜率,考查轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接收雨水.如果某個天池盆的盆口直徑為盆底直徑的兩倍,盆深為h(單位:寸),則該天池盆可測量出平面降雨量的最大值為(單位:寸)
提示:上、下底面圓的半徑分別為R、r,高為h的圓臺的體積的計算公式為V=$\frac{1}{3}$πh(R2+r2+Rr)(  )
A.$\frac{7}{12}$hB.$\frac{3}{4}$hC.$\frac{1}{2}$hD.h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''(x)是f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.已知:任何三次函數(shù)既有拐點(diǎn),又有對稱中心,且拐點(diǎn)就是對稱中心.設(shè)$f(x)=\frac{1}{3}{x^3}-2{x^2}+\frac{8}{3}x+2$,則數(shù)列{an}的通項(xiàng)公式為an=n-1007,則$\sum_{i=1}^{2017}{f({a_i})=}$4034.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)若f(x)有極值0,求實(shí)數(shù)a,并確定該極值為極大值還是極小值;
(2)在(1)的條件下,當(dāng)x∈[0,+∞)時,f(x)≥mxln(x+1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=3sin3x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.tan1020°=( 。
A.$-\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知cosα=$\frac{1}{3}$,α∈(0,π),則cos($\frac{3}{2}$π+2α)等于( 。
A.$-\frac{{4\sqrt{2}}}{9}$B.$-\frac{7}{9}$C.$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=sinx+$\sqrt{3}$cosx的值域?yàn)閇-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$則關(guān)于x的不等式f(f(x))≤3的解集為(-∞,2].

查看答案和解析>>

同步練習(xí)冊答案