3.已知函數(shù)y=3sin3x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調遞增區(qū)間.

分析 (1)利用正弦函數(shù)的周期性,求得f(x)的最小正周期.
(2)利用正弦函數(shù)的單調性,求得f(x)的單調增區(qū)間.

解答 解:(1)f(x)=3sin3x的最小正周期為$\frac{2π}{3}$.
(2)對于f(x)=3sin3x,令2kπ-$\frac{π}{2}$≤3x≤2kπ+$\frac{π}{2}$,求得$\frac{2kπ}{3}$-$\frac{π}{6}$≤x≤$\frac{2kπ}{3}$+$\frac{π}{6}$,
故函數(shù)的單調增區(qū)間為[$\frac{2kπ}{3}$-$\frac{π}{6}$,$\frac{2kπ}{3}$+$\frac{π}{6}$],k∈Z.

點評 本題主要考查正弦函數(shù)的周期性和單調性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域為R且滿足-f(x)=f(-x),f(x)=f(2-x),則$f({log_2}4+{log_4}8+{log_8}16-{e^{ln\frac{5}{6}}})$=( 。
A.1B.-1C.$\frac{3}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設全集為U,若A∩∁UB={1},A∩B={2},則集合A可表示為(  )
A.{1}B.{1,2}C.{2}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=2sinx-cosx在x0處取得最大值,則cosx0=( 。
A.$-\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知${(1-2x)^6}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}+{a_6}{x^6}$,則|a0|+|a1|+|a2|+|a3|+|a4|+|a5|+|a6|的值為( 。
A.729B.243C.64D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點,斜率為2,若與雙曲線的兩個交點分別在左右兩支上,則雙曲線離心率e的取值范圍是(  )
A.$e>\sqrt{2}$B.$1<e<\sqrt{3}$C.$e>\sqrt{5}$D.$1<e<\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.為了探究電離輻射的劑量與人體的受損程度是否有關,用兩種不同劑量的電離輻射照射小白鼠.在照射14天內的結果如表所示:
死亡存活總計
第一種劑量141125
第二種劑量61925
總計203050
進行統(tǒng)計分析時的統(tǒng)計假設是小白鼠的死亡與劑量無關.
解析 根據(jù)獨立性檢驗的基本思想,可知類似于反證法,即要確認“兩個分量有關系”這一結論成立的可信程度,首先假設該結論不成立.對于本題,進行統(tǒng)計分析時的統(tǒng)計假設應為“小白鼠的死亡與劑量無關”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知扇形的中心角為2,扇形所在圓的半徑為r,若扇形的面積值與周長值的差為f(r),求f(r)的最小值及對應r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域[-1,5],部分對應值如表,f(x)的導函數(shù)f′(x),的圖象如圖所示,
 x-10245
f(x)141.541
下列關于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域為[1,4];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是4,那么t的最大值為4;
④當1<a<4時,函數(shù)y=f(x)-a最多有4個零點.
其中正確的命題個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案