1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x,x≤0\\ \frac{{\sqrt{x}}}{e^x},x>0\end{array}\right.$,若關于x的方程f(x)-a+1=0恰有3個不同的實數(shù)根,則實數(shù)a的取值范圍為( 。
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(1,\frac{1}{e}+1)$C.$(0,\frac{1}{2e}+1)$D.$(\frac{1}{e},1)$

分析 利用導數(shù)求出函數(shù)的單調(diào)區(qū)間,畫出函數(shù)圖象,根據(jù)圖象即可求解.

解答 解:當x>0時,f(x)=$\frac{\sqrt{x}}{{e}^{x}}$,f′(x)=$\frac{\frac{1}{2\sqrt{x}}-\sqrt{x}}{{e}^{x}}$,
令f′(x)=0,得x=$\frac{1}{2}$,x$∈(0,\frac{1}{2})$時,f′(x)>0,x$∈(\frac{1}{2},+∞)時$,f′(x)<0
∴f(x)在(0,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,+∞)遞減,
所以函數(shù)f(x)的圖形如下:
根據(jù)圖象可得:方程f(x)-a+1=0恰有3個不同的實數(shù)根時,0<a-1<f($\frac{1}{2}$)
f($\frac{1}{2}$)=$\frac{\sqrt{2e}}{2e}$,實數(shù)a的取值范圍為(1,1+$\frac{\sqrt{2e}}{2e}$).
故選:A.

點評 本題考查了函數(shù)的零點的定義及求法,考查了函數(shù)與方程的思想、數(shù)形結合思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.如圖所示的空間幾何體ABCDEFG中,四邊形ABCD是邊長為2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1,AE=3
(Ⅰ)求證:平面CFG⊥平面ACE
(Ⅱ)求平面CEG與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-alnx-a,其中常數(shù)a>0,若f(x)有兩個零點x1,x2(0<x1<x2),求證:$\frac{1}{a}<{x_1}<1<{x_2}<a$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的虛軸長為4,焦距為$4\sqrt{3}$,則雙曲線的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.矩形ABCD中,$AB=\sqrt{3}$,BC=1,將△ABC與△ADC沿AC所在的直線進行隨意翻折,在翻折過程中直線AD與直線BC成的角范圍(包含初始狀態(tài))為( 。
A.$[0,\frac{π}{6}]$B.$[0,\frac{π}{3}]$C.$[0,\frac{π}{2}]$D.$[0,\frac{2π}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.將十進制數(shù)217轉化為二進制數(shù)11011001(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.下列結論正確的是①②④.
①在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.35,則ξ在(0,2)內(nèi)取值的概率為0.7;
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=e4;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”,是真命題;
④設常數(shù)a、b∈R+,則不等式ax2-(a+b-1)x+b>0對?x>1恒成立的充要條件是a≥b-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知橢圓C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1與雙曲線C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1有相同的焦點,則橢圓C1的離心率e1的取值范圍為$\frac{\sqrt{2}}{2}$<e1<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中(如圖),已知點P在直線BC1上運動,則下列四個命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成的角的大小不變;
③二面角P-AD1-C的大小不變;
④M是平面A1B1C1D1上到點D和C1距離相等的點,則M點的軌跡是直線A1D1
其中真命題的編號是①③④(寫出所有真命題的編號)

查看答案和解析>>

同步練習冊答案