13.已知橢圓C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1與雙曲線C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1有相同的焦點(diǎn),則橢圓C1的離心率e1的取值范圍為$\frac{\sqrt{2}}{2}$<e1<1.

分析 由橢圓C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1與雙曲線C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1有相同的焦點(diǎn),可得m>0,n<0.因此m+2-(-n)=m-n,解得n=-1.于是橢圓C1的離心率e12=1-$\frac{1}{m+2}$,利用不等式的性質(zhì)和e<1即可得出.

解答 解:在橢圓C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1中,a12=m+2,b12=-n,c12=m+2+n,e12=$\frac{m+2+n}{m+2}$=1+$\frac{n}{m+2}$.
∵曲線C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1,∴a22=m,b22=-n,c22=m-n.由題意可得m+2+n=m-n,則n=-1.
∴e12=1-$\frac{1}{m+2}$.由m>0,得m+2>2.
∴0<$\frac{1}{m+2}$<$\frac{1}{2}$,-$\frac{1}{m+2}$>-$\frac{1}{2}$,∴1-$\frac{1}{m+2}$>$\frac{1}{2}$,即e12>$\frac{1}{2}$.
而0<e1<1,∴$\frac{\sqrt{2}}{2}$<e1<1.
故答案為:$\frac{\sqrt{2}}{2}$<e1<1.

點(diǎn)評 本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點(diǎn)M的坐標(biāo)(x,y)滿足不等式組$\left\{\begin{array}{l}{2x+y-4≥0,}&{\;}\\{x-y-2≤0,}&{\;}\\{y-3≤0,}&{\;}\end{array}\right.$N為直線y=-2x+2上任一點(diǎn),則|MN|的最小值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x,x≤0\\ \frac{{\sqrt{x}}}{e^x},x>0\end{array}\right.$,若關(guān)于x的方程f(x)-a+1=0恰有3個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為( 。
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(1,\frac{1}{e}+1)$C.$(0,\frac{1}{2e}+1)$D.$(\frac{1}{e},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在正方體ABCD-A1B1C1D1中,AB=3$\sqrt{3}$,點(diǎn)E,F(xiàn)在線段DB1上,且DE=EF=FB1,點(diǎn)M是正方體表面上的一動點(diǎn),點(diǎn)P,Q是空間兩動點(diǎn),若$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2且|PQ|=4,則$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值為-$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知平面直角坐標(biāo)系內(nèi),B、C兩點(diǎn)是x軸上的兩動點(diǎn),且|BC|=$\sqrt{2}$,A點(diǎn)是直線y=$\sqrt{2}$上的動點(diǎn),則|AB|:|AC|的最大值與最小值的和為(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{1}{2}$(x-1)2+a的定義域和值域都是[1,b](b>1),則a+b的值等于( 。
A.-2B.2C.4D.2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{9}{8cos2x+16}$-sin2x,則當(dāng)f(x)取最小值時cos2x的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),將△ADE沿AE折起,使平面ADE⊥平面ABCE,得到幾何體D-ABCE,M點(diǎn)是此時BD的中點(diǎn).

(1)求異面直BE和CM所成角的大;
(2)求BD與平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.棱錐P-ABC的四個頂點(diǎn)均在同一個球面上,其中PA⊥平面ABC,△ABC是正三角形,PA=2BC=6,則該球的表面積為48π.

查看答案和解析>>

同步練習(xí)冊答案