【題目】近幾年,我國(guó)在電動(dòng)汽車領(lǐng)域有了長(zhǎng)足的發(fā)展,電動(dòng)汽車的核心技術(shù)是動(dòng)力總成,而動(dòng)力總成的核心技術(shù)是電機(jī)和控制器,我國(guó)永磁電機(jī)的技術(shù)已處于國(guó)際領(lǐng)先水平.某公司計(jì)劃今年年初用196萬(wàn)元引進(jìn)一條永磁電機(jī)生產(chǎn)線,第一年需要安裝、人工等費(fèi)用24萬(wàn)元,從第二年起,包括人工、維修等費(fèi)用每年所需費(fèi)用比上一年增加8萬(wàn)元,該生產(chǎn)線每年年產(chǎn)值保持在100萬(wàn)元.

1)引進(jìn)該生產(chǎn)線幾年后總盈利最大,最大是多少萬(wàn)元?

2)引進(jìn)該生產(chǎn)線幾年后平均盈利最多,最多是多少萬(wàn)元?

【答案】1)引進(jìn)生產(chǎn)線10年后總盈利最大為204萬(wàn)元(2)引進(jìn)生產(chǎn)線7年后平均盈利最多為24萬(wàn)元

【解析】

1)設(shè)引進(jìn)設(shè)備n年后總盈利為萬(wàn)元,設(shè)除去設(shè)備引進(jìn)費(fèi)用,第n年的成本為,構(gòu)成一等差數(shù)列,由等差數(shù)列前公式求得第年總成本,這樣可得總盈利,由二次函數(shù)性質(zhì)可得最大值;

(2)平均盈利為,可用基本不等式求得最大值.

解:(1)設(shè)引進(jìn)設(shè)備n年后總盈利為萬(wàn)元,設(shè)除去設(shè)備引進(jìn)費(fèi)用,第n年的成本為,構(gòu)成一等差數(shù)列,前n年成本之和為萬(wàn)元;

,

所以當(dāng)時(shí),萬(wàn)元;

答:引進(jìn)生產(chǎn)線10年后總盈利最大為204萬(wàn)元

2)設(shè)n年后平均盈利為萬(wàn)元,則,

因?yàn)?/span>

當(dāng),當(dāng)且僅當(dāng)取得等號(hào),

時(shí),萬(wàn)元:

答:引進(jìn)生產(chǎn)線7年后平均盈利最多為24萬(wàn)元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=2pxp0)的焦點(diǎn)為F,直線y=kx+1)與C相切于點(diǎn)A|AF|=2

)求拋物線C的方程;

)設(shè)直線lCMN兩點(diǎn),TMN的中點(diǎn),若|MN|=8,求點(diǎn)Ty軸距離的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在以直角坐標(biāo)原點(diǎn)為極點(diǎn),的非負(fù)半軸為極軸的極坐標(biāo)系下,曲線的方程是,將向上平移1個(gè)單位得到曲線

)求曲線的極坐標(biāo)方程;

)若曲線的切線交曲線于不同兩點(diǎn),切點(diǎn)為.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】受電視機(jī)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)電視機(jī)的利潤(rùn)與該電視機(jī)首次出現(xiàn)故障的時(shí)間有關(guān).某電視機(jī)制造廠生產(chǎn)甲、乙兩種型號(hào)電視機(jī),保修期均為2年,現(xiàn)從該廠已售出的兩種型號(hào)電視機(jī)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時(shí)間x(年)

電視機(jī)數(shù)量(臺(tái))

3

5

42

8

42

每臺(tái)利潤(rùn)(千元)

1

2

3

1.8

2.8

將頻率視為概率,解答下列問(wèn)題:

1)從該廠生產(chǎn)的甲種型號(hào)電視機(jī)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

2)該廠預(yù)計(jì)今后這兩種型號(hào)電視機(jī)銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種型號(hào)電視機(jī),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種型號(hào)電視機(jī)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒內(nèi).

1恰有1個(gè)盒不放球,共有幾種放法?

2恰有1個(gè)盒內(nèi)有2個(gè)球,共有幾種放法?

3恰有2個(gè)盒不放球,共有幾種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.

1)求點(diǎn),的極坐標(biāo);

2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.

1)求每件產(chǎn)品的平均銷售利潤(rùn);

2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.

表中,,

根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用(萬(wàn)元)的回歸方程.

①求關(guān)于的回歸方程;

②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤(rùn)營(yíng)銷費(fèi)用,取

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

同步練習(xí)冊(cè)答案