【題目】已知等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當(dāng)且僅當(dāng)n=9時,數(shù)列{an}的前n項和Sn取得最大值,則該數(shù)列首項a1的取值范圍是( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
【答案】A
【解析】解:由等差數(shù)列{an}滿足 =1, 可得: =1,
∴ =1,
由等差數(shù)列{an}的性質(zhì)可得:a6+a9=a7+a8 ,
整理得:sin(a6﹣a9)=1,
∴sin(3d)=﹣1.∵d∈(﹣1,0),∴3d∈(﹣3,0),
則3d= ,d=﹣ .
由題意當(dāng)且僅當(dāng)n=9時,數(shù)列{an}的前n項和Sn取得最大值,
∴ ,解得: <a1 .
∴首項a1的取值范圍是 .
故選:A.
【考點精析】通過靈活運用數(shù)列的通項公式,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè) ,c=f(0.20.6),則a,b,c的大小關(guān)系是( )
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓具有性質(zhì):若M,N是橢圓C: =1(a>b>0且a,b為常數(shù))上關(guān)于y軸對稱的兩點,P是橢圓上的左頂點,且直線PM,PN的斜率都存在(記為kPM , kPN),則kPMkPN= .類比上述性質(zhì),可以得到雙曲線的一個性質(zhì),并根據(jù)這個性質(zhì)得:若M,N是雙曲線C: =1(a>0,b>0)上關(guān)于y軸對稱的兩點,P是雙曲線C的左頂點,直線PM,PN的斜率都存在(記為kPM , kPN),雙曲線的離心率e= ,則kPMkPN等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為△ABC的外心,角A、B、C的對邊分別為a、b、c.
(1)若5 +4 +3 = ,求cos∠BOC的值;
(2)若 = ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等差數(shù)列,a1=2,{an}的前n項和為Sn , 數(shù)列{bn}為等比數(shù)列,且a1b1+a2b2+a3b3+…+anbn=(n﹣1)2n+2+4對任意的n∈N*恒成立.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)是否存在非零整數(shù)λ,使不等式sin < 對一切n∈N*都成立?若存在,求出λ的值;若不存在,說明理由.
(3)各項均為正整數(shù)的無窮等差數(shù)列{cn},滿足c39=a1007 , 且存在正整數(shù)k,使c1 , c39 , ck成等比數(shù)列,若數(shù)列{cn}的公差為d,求d的所有可能取值之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx(a∈R).
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1. (Ⅰ)若3是關(guān)于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(Ⅱ)當(dāng)0<a<1且t=1時,解不等式f(x)≤g(x);
(Ⅲ)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,3]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是( )
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人投籃的水平都比較穩(wěn)定,若三人各自獨立地進行一次投籃測試,則甲投中而乙不投中的概率為 ,乙投中而丙不投中的概率為 ,甲、丙兩人都投中的概率為 .
(1)分別求甲、乙、丙三人各自投籃一次投中的概率;
(2)若丙連續(xù)投籃5次,求恰有2次投中的概率;
(3)若丙連續(xù)投籃3次,每次投籃,投中得2分,未投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外1次未投中,則額外加1分;若3次全投中,則額外加3分,記ξ為丙連續(xù)投籃3次后的總得分,求ξ的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com