已知橢圓的焦距為4,且過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)為橢圓上一點,過點軸的垂線,垂足為。取點,連接,過點的垂線交軸于點。點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓C一定有唯一的公共點?并說明理由.

(Ⅰ)(Ⅱ)直線與橢圓只有一個公共點

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,橢圓的右焦點為,離心率為
分別過的兩條弦,相交于點(異于,兩點),且
(1)求橢圓的方程;
(2)求證:直線,的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知,,,,其中.設(shè)直線的交點為,求動點的軌跡的參數(shù)方程(以為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點,當(dāng)圓的半徑最長時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的左、右焦點分別為離心率為直線與C的兩個交點間的距離為
(I)求;
(II)設(shè)過的直線l與C的左、右兩支分別相交有A、B兩點,且證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的焦點F作斜率分別為的兩條不同的直線,且相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的頂點A在射線上,、兩點關(guān)于x軸對稱,0為坐標(biāo)原點,且線段AB上有一點M滿足當(dāng)點A在上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過的直線與W相交于P,Q兩點,使得若存在,
求出直線;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點),求的值;
(3)設(shè)點關(guān)于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點). 求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案