分析 (1)連結(jié)AC,推導(dǎo)出AC⊥BD,CC1⊥BD,從而BD⊥A1P,再由勾股定理得BP⊥A1P,由此能證明A1P⊥平面PBD.
(2)以D為坐標原點,DA,DC,DD1所在直線為x,y,z軸,建立空間直角坐標系,利用向量法能求出平面A1BP與平面CDD1C1所成銳二面角的余弦值.
解答 證明:(1)連結(jié)AC,∵底面ABCD是正方形,AC⊥BD,
又∵側(cè)棱CC1⊥底面ABCD,∴CC1⊥BD,
∵AC∩CC1=C,∴BD⊥平面AA1PC,則BD⊥A1P,
∵${A}_{1}P=\sqrt{3}$,BP=$\sqrt{2}$,${A}_{1}B=\sqrt{5}$,∴${A}_{1}{P}^{2}+B{P}^{2}={A}_{1}{B}^{2}$,∴BP⊥A1P,
∵BD∩BP=B,∴A1P⊥平面PBD.
解:(2)以D為坐標原點,DA,DC,DD1所在直線為x,y,z軸,建立空間直角坐標系,
則A1(1,0,2),B(1,1,0),P(0,1,1),
∴$\overrightarrow{{A}_{1}B}$=(0,1,-2),$\overrightarrow{PB}$=(1,0,-1),
設(shè)平面A1BP的一個法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}B}=y-2z=0}\\{\overrightarrow{n}•\overrightarrow{PB}=x-z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(1,2,1),
向量$\overrightarrow{DA}=(1,0,0)$是平面CDD1C1的一個法向量,
∴cos<$\overrightarrow{n},\overrightarrow{DA}$>=$\frac{\overrightarrow{n}•\overrightarrow{DA}}{|\overrightarrow{n}|•|\overrightarrow{DA}|}$=$\frac{1}{\sqrt{1+1+4}}$=$\frac{\sqrt{6}}{6}$.
∴平面A1BP與平面CDD1C1所成銳二面角的余弦值為$\frac{\sqrt{6}}{6}$.
點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0) | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0) | ||
C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1(y≠0) | D. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1(y≠0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題
過點作直線交橢圓于兩點,若點恰為線段的中點,則直線的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\frac{7\sqrt{2}}{3}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={log_{\frac{1}{2}}}x$ | B. | $y=\frac{1}{x}$ | C. | y=-tanx | D. | y=-x3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com