14.已知向量$\overrightarrow a$⊥(${\overrightarrow a$+2$\overrightarrow b}$),|$\overrightarrow a$|=2,|$\overrightarrow b$|=2,則向量$\overrightarrow a$,$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 根據(jù)向量的數(shù)量積和向量的垂直的條件計(jì)算即可.

解答 解:設(shè)向量$\overrightarrow a$,$\overrightarrow b$的夾角為θ,
∵$\overrightarrow a$⊥(${\overrightarrow a$+2$\overrightarrow b}$),|$\overrightarrow a$|=2,|$\overrightarrow b$|=2,
∴$\overrightarrow a$•(${\overrightarrow a$+2$\overrightarrow b}$)=|$\overrightarrow a$|2+2${\overrightarrow a$•$\overrightarrow b}$=|$\overrightarrow a$|2+2|${\overrightarrow a$|•|$\overrightarrow b}$|cosθ=4+8cosθ=0,
解得cosθ=-$\frac{1}{2}$,
∵0≤θ≤π,
∴θ=$\frac{2π}{3}$,
故選:B

點(diǎn)評(píng) 本題考查了向量的數(shù)量積和向量的垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)f(x)=ex(-x2+x+1),且對(duì)?$θ∈[0\;,\;\;\frac{π}{2}]$,|f(cosθ)-f(sinθ)|≤b恒成立,則b的最小值為(  )
A.e-1B.eC.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow{m}$與向量$\overrightarrow{n}$的夾角為135°,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow n$與$\overrightarrow q=(1,0)$的夾角為$\frac{π}{2}$,$\overrightarrow p=(cosA,2{cos^2}\frac{C}{2})$,其中∠A,∠B,∠C為三角形三內(nèi)角,$B=\frac{π}{2}$,求$|\overrightarrow p+\overrightarrow n|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{4}{5}$-f(1-x),則函數(shù)y=f(x)-g(x)的零點(diǎn)的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法中,正確的是( 。
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.已知x∈R,則“x2-2x-3=0”是“x=3”的必要不充分條件
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.命題p:?x∈R,x>sinx的否定形式為?x∈R,x≤sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i是虛數(shù)單位,復(fù)數(shù)z=(m-1)(m-2)+(m-2)i,m∈R,若z是純虛數(shù),則m=( 。
A.1B.2C.1或2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow$=(cosωx-sinωx,2sinωx)(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,若f(x)的最小正周期為π.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若f(A)=1,a=$\sqrt{21}$,b+c=9,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=4m-x,且f(-2)=$\frac{1}{8}$,則m的值為(  )
A.-lB.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)y=sin(2x+ϕ)的圖象沿x軸向左平移 $\frac{π}{4}$個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則ϕ的一個(gè)可能取值為( 。
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.0D.$-\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案