已知函數(shù) ,
(1)當(dāng)  時(shí),求函數(shù)  的最小值;
(2)當(dāng) 時(shí),求證:無(wú)論取何值,直線(xiàn)均不可能與函數(shù)相切;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。
(1)-2ln2;(2)詳見(jiàn)解析;(3)存在實(shí)數(shù),

試題分析:(1)把a(bǔ)=1代入函數(shù)解析式,求導(dǎo)后得到導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,根據(jù)導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào)得到原函數(shù)的單調(diào)性,從而求出函數(shù)f(x)的最小值;(2)把a(bǔ)=-1代入原函數(shù),求出導(dǎo)函數(shù)后利用基本不等式求出導(dǎo)函數(shù)的值域,從而說(shuō)明無(wú)論c 取何值,直線(xiàn)均不可能與函數(shù)f(x)相切;(3)假設(shè)存在實(shí)數(shù)a使得對(duì)任意的 ,且 ,有恒成立,假設(shè) ,則 恒成立,構(gòu)造輔助函數(shù) ,只要使函數(shù)g(x)在定義域內(nèi)為增函數(shù)即可,利用其導(dǎo)函數(shù)恒大于等于0可求解a的取值范圍.
解;(1)顯然函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050720491566.png" style="vertical-align:middle;" />,        
當(dāng)   
∴ 當(dāng),
時(shí)取得最小值,其最小值為
(2)∵,
假設(shè)直線(xiàn)與相切,設(shè)切點(diǎn)為,則
所以所以無(wú)論取何值,直線(xiàn)均不可能與函數(shù)相切。
(3)假設(shè)存在實(shí)數(shù)使得對(duì)任意的 ,且,有,恒成立,不妨設(shè),只要,即:
,只要 為增函數(shù)
又函數(shù)
考查函數(shù) 
要使,
故存在實(shí)數(shù)恒成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判斷f(x)的單調(diào)性;.
(2)若x>1時(shí),f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )
A.(0,1]B.[1,+∞)
C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.
(1)求的值;
(2)若對(duì)于任意的,恒成立,求的范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

水庫(kù)的蓄水量隨時(shí)間而變化,現(xiàn)用表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫(kù)的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為

(1)該水庫(kù)的蓄求量小于50的時(shí)期稱(chēng)為枯水期.以表示第1月份(),同一年內(nèi)哪幾個(gè)月份是枯水期?
(2)求一年內(nèi)該水庫(kù)的最大蓄水量(取計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)矩形紙片ABCD的邊AB=6,AD=10,點(diǎn)E、F分別在邊AB和BC上(不含端點(diǎn)). 現(xiàn)將紙片的右下角沿EF翻折,使得頂點(diǎn)B翻折后的新位置B1恰好落在邊AD上. 設(shè),EF=l,l關(guān)于t的函數(shù)為.

試求:(1)函數(shù)f(t)的定義域;
(2)函數(shù)f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) 
求證:當(dāng)時(shí),函數(shù)在區(qū)間上是單調(diào)遞減函數(shù);
的取值范圍,使函數(shù)在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)滿(mǎn)足x2f′(x)+2xf(x)=,f(2)=,則x>0時(shí),f(x)(  )
A.有極大值,無(wú)極小值
B.有極小值,無(wú)極大值
C.既有極大值又有極小值
D.既無(wú)極大值也無(wú)極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在區(qū)間上是減函數(shù),那么的最大值為            

查看答案和解析>>

同步練習(xí)冊(cè)答案