集合M={-2,0,1,2},N={x|x2-x>0},則M∩N=(  )
A、{-2,1,2}
B、{0,2}
C、{-2,2}
D、[-2,2]
考點:交集及其運算
專題:集合
分析:求解一元二次不等式化簡集合N,然后直接利用交集運算求解.
解答: 解:∵M={-2,0,1,2},
N={x|x2-x>0}={x|x<0或x>1},
則M∩N={-2,0,1,2}∩{x|x<0或x>1}={-2,2}.
故選:C.
點評:本題考查了交集及其運算,考查了一元二次不等式的解法,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(1-2a)x  (x<1)
a
x
+4    (x≥1)
是R上的增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=sinωx(ω>0)在區(qū)間[-
π
5
,
π
3
]
上是增函數(shù),則ω的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關系中正確的是( 。
A、log76<ln
1
2
<log3π
B、log3π<ln
1
2
<log76
C、ln
1
2
<log76<log3π
D、ln
1
2
<log3π<log76

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+x
+
x
1-x
的定義域是( 。
A、[-1,+∞)
B、(-∞,-1]
C、[-1,1)∪(1,+∞)
D、R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四邊形OABC中,OA⊥OC,AB⊥BC,且OA=6,OC=17,tan∠BCO=
4
3
,圓M的圓心在線段OA上,圓M與直線BC相切,兩點O與A到圓M上任意一點的距離均不小于8.
(1)求AB的長;
(2)OM多長時,圓M的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R,且滿足x-2y-1≥0,則T=x2+y2+4x-2y的最小值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分別是AB,A1C的中點.
(1)求證:BC⊥平面BB1A1A;
(2)求證:MN∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:3×3x+2=32x+3

查看答案和解析>>

同步練習冊答案