A. | 6 | B. | 8 | C. | 10 | D. | 12 |
分析 由拋物線的焦點(diǎn)坐標(biāo),設(shè)直線AB的方程,代入拋物線方程,利用韋達(dá)定理,弦長公式及點(diǎn)到直線的距離公式,求得k的值,即可求得|AB|.
解答 解:根據(jù)題意,拋物線y2=4x的焦點(diǎn)為F(1,0).
設(shè)直線AB的斜率為k,可得直線AB的方程為y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$消去x,得y2-$\frac{4}{k}$y-4=0,
設(shè)A(x1,y1)、B(x2,y2),
由根與系數(shù)的關(guān)系可得y1+y2=$\frac{4}{k}$,y1y2=-4.
丨AB丨=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4(1+{k}^{2})}{{k}^{2}}$
O到直線AB的距離d=$\frac{丨k丨}{\sqrt{1+{k}^{2}}}$,
則△OAB的面積S=$\frac{1}{2}$丨AB丨•d=$\frac{1}{2}$×$\frac{4(1+{k}^{2})}{{k}^{2}}$×$\frac{丨k丨}{\sqrt{1+{k}^{2}}}$=2$\sqrt{2}$,
解得:k=1,
∴丨AB丨=$\frac{4(1+{k}^{2})}{{k}^{2}}$=8,
故選B.
點(diǎn)評 本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理,弦長公式及點(diǎn)到直線距離公式的應(yīng)用,考查計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com