18.已知復(fù)數(shù)$z=\frac{5}{2i-1}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)對應(yīng)的點位于復(fù)平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡求出z,進一步得到$\overline{z}$,得到$\overline{z}$的坐標(biāo)得答案.

解答 解:∵復(fù)數(shù)$z=\frac{5}{2i-1}=\frac{{5({-2i-1})}}{{({2i-1})({-2i-1})}}=-1-2i$.
∴$\overline z=-1+2i$.
其對應(yīng)的點為(-1,2),它位于復(fù)平面的第二象限.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的頂點C(x0,y0)的坐標(biāo)滿足不等式x2+y2≤8+2y,y≥3,邊AB在x軸上,已知點Q(0,1)與直線AC及BC的距離均為1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F為拋物線C:y2=4x的焦點,過點F作直線且交C于A,B兩點,O是坐標(biāo)原點,△OAB的面積為2$\sqrt{2}$,則|AB|=( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:方程5x2+my2=1表示焦點在x軸上的橢圓;命題q:方程(m+1)x2-my2=1表示焦點在x軸上的雙曲線,若p∧q為假,p∨q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線E$:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其一漸近線被圓C:(x-1)2+(y-3)2=9所截得的弦長等于4,則E的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)正項等差數(shù)列{an}的前n項和為Sn,若S2017=4034,則$\frac{1}{a_9}+\frac{9}{{{a_{2009}}}}$的最小值為( 。
A.$\frac{3}{2}$B.$\frac{9}{4}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過拋物線y2=4x的焦點F作直線l交拋物線于A,B兩點,若$\frac{1}{|AF|}-\frac{1}{|BF|}$=$\frac{1}{2}$,則直線l的傾斜角θ(0<θ<$\frac{π}{2}$)等于(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正三棱錐的側(cè)面都是直角三角形,則它的側(cè)棱與底面所成角的余弦值為(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖為某幾何體的三視圖,則該幾何體的內(nèi)切球的直徑為( 。
A.2B.1C.$\frac{1}{2}$D.4

查看答案和解析>>

同步練習(xí)冊答案