設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x•f(x)<0的解集為(  )
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,分類討論,即可得到不等式的解集.
解答: 解:∵奇函數(shù)f(x)在(0,+∞)上為增函數(shù),f(1)=0,
∴函數(shù)f(x)在(-∞,0)上為增函數(shù),且f(-1)=-f(1)=0,
則不等式等價(jià)為x>0時(shí),f(x)<0,此時(shí)0<x<1
當(dāng)x<0時(shí),f(x)>0,此時(shí)-1<x<0,
綜上不等式的解為-1<x<0或0<x<1,
故不等式的解集為:(-1,0)∪(0,1).
故選:D.
點(diǎn)評(píng):本題主要考查不等式的解法,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵,綜合考查函數(shù)性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我國齊梁時(shí)代的數(shù)學(xué)家祖暅(公元前5-6世紀(jì))提出了一條原理:“冪勢既同,則積不容異.”這句話的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任何平面所截,如果截得的兩個(gè)截面的面積總是相等,那么這兩個(gè)幾何體的體積相等.設(shè):由曲線x2=4y和直線x=4,y=0所圍成的平面圖形,繞y軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為Γ1;由同時(shí)滿足x≥0,x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的點(diǎn)(x,y)構(gòu)成的平面圖形,繞y軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為Γ2.根據(jù)祖暅原理等知識(shí),通過考察Γ2可以得到Γ1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意x∈R,滿足(a-2)x2+2(a-2)x-4<0恒成立的所有實(shí)數(shù)a構(gòu)成集合A,使不等式|x-4|+|x-3|<a的解集為空集的所有實(shí)數(shù)a構(gòu)成集合B,則A∩∁RB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}(n∈Z)中,“an+1+an=an+1+an+2”是數(shù)列{an}是等差數(shù)列的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由數(shù)字0,1,2,3,4可組成無重復(fù)數(shù)字的兩位數(shù)的個(gè)數(shù)是( 。
A、25B、20C、16D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>b,則:①ac2>bc2,②2a>2b,③
1
a
1
b
,④a3>b3,⑤|a|>|b|,其中正確的結(jié)論有(  )
A、1個(gè)B、2個(gè)
C、3 個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是雙曲線
x2
9
-
y2
16
=1左準(zhǔn)線上一點(diǎn),F(xiàn)1、F2分別是其左、右焦點(diǎn),PF2與雙曲線右支交于點(diǎn)Q,且
PQ
=3
QF2
,則|
QF1
|的值為( 。
A、
16
5
B、4
C、
102
25
D、
51
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的一條漸近線與直線3x-y+1=0平行,則此雙曲線的離心率是( 。
A、
10
B、2
2
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

確定結(jié)論“X與Y有關(guān)系”的可信度為99.5%時(shí),則隨機(jī)變量的觀測值K必須( 。
A、小于10.828
B、大于7.879
C、小于6.635
D、大于3.841

查看答案和解析>>

同步練習(xí)冊答案