【題目】已知中,角,,所對(duì)的邊分別是,,,且點(diǎn),,動(dòng)點(diǎn)滿足(為常數(shù)且),動(dòng)點(diǎn)的軌跡為曲線.
(Ⅰ)試求曲線的方程;
(Ⅱ)當(dāng)時(shí),過(guò)定點(diǎn)的直線與曲線交于,兩點(diǎn),是曲線上不同于,的動(dòng)點(diǎn),試求面積的最大值.
【答案】(1)(),(2)當(dāng)的方程為時(shí),的面積最大,最大值為.
【解析】試題分析:(Ⅰ) ,即點(diǎn)的軌跡是以為焦點(diǎn), 的橢圓;(Ⅱ)根據(jù)(Ⅰ)的結(jié)果可知方程為 ,斜率不存在時(shí),面積無(wú)最大值,當(dāng)斜率存在時(shí),設(shè)直線為,與其平行并且和橢圓相切時(shí)三角形的面積最大,所以根據(jù)方程聯(lián)立后的根與系數(shù)的關(guān)系表示弦長(zhǎng)和平行線間的距離得到,表示為關(guān)于的函數(shù),計(jì)算函數(shù)的最大值.
試題解析:(Ⅰ)在中,因?yàn)?/span>,所以(定值),且,
所以動(dòng)點(diǎn)的軌跡為橢圓(除去、與共線的兩個(gè)點(diǎn)).
設(shè)其標(biāo)準(zhǔn)方程為,所以,
所以求曲線的軌跡方程為(),
(Ⅱ)當(dāng)時(shí),橢圓方程為.
①過(guò)定點(diǎn)的直線與軸重合時(shí),面積無(wú)最大值,
②過(guò)定點(diǎn)的直線不與軸重合時(shí),
設(shè)方程為:,、,
若,因?yàn)?/span>,故此時(shí)面積無(wú)最大值.
根據(jù)橢圓的幾何性質(zhì),不妨設(shè),
聯(lián)立方程組消去整理得:,
所以則.
因?yàn)楫?dāng)直線與平行且與橢圓相切時(shí),切點(diǎn)到直線的距離最大,
設(shè)切線:,
聯(lián)立消去整理得,
由,解得.
又點(diǎn)到直線的距離,
所以,
所以.將代入得:,
令,設(shè)函數(shù),則,
因?yàn)楫?dāng)時(shí),,當(dāng)時(shí),,
所以在上是增函數(shù),在上是減函數(shù),所以.
故時(shí),面積最大值是.
所以,當(dāng)的方程為時(shí),的面積最大,最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C所對(duì)邊分別為a,b,c,a=2,B=45°,①當(dāng)b= 時(shí),三角形有個(gè)解;②若三角形有兩解,則b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2015高考福建文數(shù)】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國(guó)網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2015年某全國(guó)性大型活動(dòng)的“省級(jí)衛(wèi)視新聞臺(tái)”融合指數(shù)的數(shù)據(jù),對(duì)名列前20名的“省級(jí)衛(wèi)視新聞臺(tái)”的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.
組號(hào) | 分組 | 頻數(shù) |
1 |
| 2 |
2 |
| 8 |
3 |
| 7 |
4 |
| 3 |
(Ⅰ)現(xiàn)從融合指數(shù)在和內(nèi)的“省級(jí)衛(wèi)視新聞臺(tái)”中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在的概率;
(Ⅱ)根據(jù)分組統(tǒng)計(jì)表求這20家“省級(jí)衛(wèi)視新聞臺(tái)”的融合指數(shù)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是梯形.四邊形是矩形.且平面平面,,,,是線段上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,則四個(gè)數(shù)的大小關(guān)系是( )
A.a<c<b<d
B.c<d<a<b
C.b<d<c<a
D.d<b<a<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積= (弦×矢+矢2).弧田,由圓弧和其所對(duì)弦所圍成.公式中“弦”指圓弧對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為 π,弦長(zhǎng)等于9米的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的圖象兩相鄰對(duì)稱軸之間的距離是 ,若將f(x)的圖象先向右平移 個(gè)單位,再向上平移 個(gè)單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的對(duì)稱軸及單調(diào)區(qū)間;
(3)若對(duì)任意x∈[0, ],f2(x)﹣(2+m)f(x)+2+m≤0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com